175 lines
80 KiB
Plaintext
175 lines
80 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "2d079df5-f984-4616-b4f1-44eff727e9bb",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 提示词\n",
|
||
"\n",
|
||
"``` \n",
|
||
"任务:绘制学习曲线。给我Python代码,以实现绘制学习曲线的功能。学习曲线的形状是先平缓(代表投入很多学习但进度很慢),然后快速增加,然后又开始趋于平缓的S型曲线。下面是该学习曲线图上的文字:\n",
|
||
"Learning curve\n",
|
||
"Plateau\n",
|
||
"you did it!\n",
|
||
"Performance\n",
|
||
"Steep acceleration\n",
|
||
"Slow beginning\n",
|
||
"Number of trials or attempts at learning\n",
|
||
"注意:“Number of trials or attempts at learning”应当从0开始,而“Performance”要以百分比表示,适当调整图片上文字的位置(尤其是“Slow beginning”),避免被曲线遮挡\n",
|
||
"```\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a1676dca-9ef4-4e4a-a2f9-02103e1fb5c1",
|
||
"metadata": {},
|
||
"source": [
|
||
"## LLM输出代码与绘制结果"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "8a943ea5-843c-4c92-8586-f85e19d30cf6",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA98AAAKyCAYAAADM7m2AAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA3D1JREFUeJzs3Qd4FFUXBuAvhSTUhN5771XEQhEQFERAioJUKYqKFGn+FkAFpKOgKAgoiHQEBVFQqgWQpvTeO4RAKCEhyf+cGTYFNpA+Z3a/93mWzM5md+/slw05e+/c6xEZGRkJIiIiIiIiIkoxnin30EREREREREQkWHwTERERERERpTAW30REREREREQpjMU3ERERERERUQpj8U1ERERERESUwlh8ExEREREREaUwFt9EREREREREKYzFNxEREREREVEKY/FNRERERERElMJYfBMRkcHDw8O4uIM6derY5lj379+Pli1bIkuWLEifPr3R9vXr11vdLCIiIkog74TegYiIiFLHtm3bULt2bdy+fRutWrVChgwZsHTpUtSrVw8//PADnnvuOaubSERERPHkERkZGRnfbyYiItfl6Al2h/8WTpw4gZs3b6JUqVLQKiwsDOXKlcPBgwexbNkyNGrUyNh/9OhRY7+/vz+OHTsGHx8fq5tKRERE8cBh50RE5HYKFCiguvAWS5YswYEDB/Dss89GFd6icOHCaN68Oc6ePYu1a9da2kYiIiKKPxbfRERECv3000/G18aNG993m+ODg927d6d6u4iIiChxWHwTEVGih0WPHDnSGALt5+eHbNmy4eWXX8bx48edfu+ECRNQoUIF47zl3LlzG0Xl9u3b7/te6c2VIfBDhgwxrs+fPx9169Y1Hv/ff/+N+j4Zci3f16lTJ1y9ehU9evQwHjdjxoyoVasWduzYkegJ1woVKmRcZAj+mDFjUKxYMaRLlw5ly5Y12nOvGzduoHfv3kaPeubMmY1jW7VqldFDLff75ptvkFCOYy1duvR9t7Vu3RqzZs3C008/bVyXx5fjcfY88vrIbfJ6JfQ1njx5svF9X3311X2P63jO8ePHx9p/+PBhdOjQwchChsSXKFHC+DkJDw9P8GtARETkSlh8ExFRgkkxLcOhBw0ahKxZs+LNN980JgabN28eatSogXPnzt1XAPbp0wdp0qTBq6++akwUtmHDBuM+MYvCe3Xr1g0vvvii8T2OAvhe169fNx7n559/Nr730UcfNR5bhmrLbUkhzz906FA89dRTxozjMvP4Sy+9hH/++ee+Yvizzz4zjr1NmzZYt24dGjRoYMxQ/vrrrxuFfEKdPHnS+JozZ877bpOCtl27dsYHH0n1oNdY9ksBPXfu3PvuJ/u8vb3Rtm3bWBPEVa1aFYsWLUL9+vWNn4u0adMaPyddunRJcluJiIhsTSZcIyIikv8S4vvfwujRo43vHThwYKz948ePN/b369cvat+BAweMfRUrVowMCwuL2r9s2TJj/7Bhw2I9xpo1a4z9RYoUicyaNWvkL7/84rQNR48eNb7Pw8Mj8rHHHosMDg6Ouq1JkybGbXHdt3bt2g881oIFCxqPmy1btsh9+/ZF7R8zZoxxv0GDBkXt2759u7GvW7duUftmz55t7Pvwww8jEytNmjTGYxw+fPih3ztjxgzje+XrvTp27GjcJq9XQl9j0bx580hPT8/IM2fORO27ePFipLe3d2SjRo2i9kVERESWK1cu0sfHJ3LHjh1R+yXzatWqGc+3a9eueB8/ERGRq+FSY0RElGDfffed8fXWrVt47733ovYHBQUZX1evXh21r3jx4vfNoH7q1Cmjd9gxTNmZI0eO4LfffjOW1XoQT09PfP3118ZwdodnnnnGOGf63h74hJA2f/zxxyhZsmTUPunt79evX6zHld5wUaVKlah9lStXjppVPbEcw+JTcrh2fF7j9u3bG8uaLViwAG+99ZaxT3q279y5Y9zmIMPVd+3aZfTyy/fKxUFOS3D8XMjQfSIiInfE4puIiBJMZuEWMtTamdOnT8e6LudkT5061Si+ZGjy+fPnjaL5QcXl888//9DC21HolilTJtY+x9DppCybJsWvnMP+sMeVodoi5vnrjvPNixQpkujnl6XELl68GPWBRkxffPEF+vbti48++gj9+/d/4OM8qHiPz2ss56/LqQUyzNxRfMt2pkyZ0LRp0/t+JmT4+rBhw+L1c0FEROROWHwTEVGCSfEZEBCAK1euPPR7ZQI2ORdaCkk5D7tnz57GucrSQ1qpUqU47+foPX4Y6VlPCbly5YrVmx4XOcdZzvOWDxfkQwY5z1smQ8uePXuSznOWidbkNZORAY888kis22T/7du3jQL4YR50Tn18XmM551vO/ZbJ1yRLub5+/XrjPH45n9vB8YGETDx37yRsRERExAnXiIgoEWQotvTIylrT95KZsaVQc/jkk0+MYdrTp0/Hjz/+iHfffdfoMZXJupKDFIMpIb6PKz3ef/31l9GLvGbNGqNXWHqTN23ahBw5ciT6+R090itXrrzvNhk9IGT2+JhD1GUoeEyBgYGxZi9PLBleLsW1zIouw8kjIiKMGc1jcgzP37Nnz333P3ToECZNmmS8PkRERO6KxTcRESWYYzj2Bx98EGtY84oVK/Daa69h5syZUfvOnDljfJVluGL23Mqs565g8ODBRo/34sWLjeH0UvAuWbIEhQsXTtLjSq+59Lx///33sWZX//vvv42Z3eX1lJndhaPIl3OuY5Lz8YODg5FUMnJBRhhIW2bPno2CBQsay7nFVLFiReN87t9//z3WOf9CPnCREQ+OoelERETuiMPOiYgoFime4yLDiWWoca9evYwCUCY627hxo7EUl/SES69o+vTpjTW9Y05+Jj3esjRWq1atjMJbJkPz8vIybnd2TrOdyJBwOR4Zfv7kk08aQ8HlNZJh6zVr1ow1YVtC5M2b1xgtIEt5ybrkssSZ9DjLcm6Otbcd583L88qSZFOmTDEK4PLly2PGjBnGxGiPPfaYUbAnR++3fNjiKKbvXSfdsc649NjL+uOynJycD79582b88ccfRjs6d+6c5HYQERHZltXTrRMRka6lxh50uXLlStT33759O3L48OGRpUuXjvT19Y3MmzdvZNu2bY2lxe4lS5CVLFnS+L48efJEvvrqq5FHjhyJTJ8+faS/v3/k+fPn71sGa/DgwQ9sr2OpMVlKKyFLb8V3qTG5xOc5L1y4EFmqVKnIHDlyRObOnTtqiTDH5ZNPPolMik2bNhlLemXKlCkyXbp0kfXq1Yv866+/7vu+rVu3Rj755JPGayrLh7Vu3dp4jR+01NjDXuN7j12WX5P77d+/P87vk/zbtWtnvB5+fn6RZcqUMV6DW7duJeLoiYiIXIeH/GP1BwBERER2FBoaavQ0y7nXcj60ozdfhuJfuHDB6P2V5bziMzEdERERuTYOOyciIkpC8S3necsQfJkRXGZw9/X1xc2bN7F7925jMjYZgk1ERETEnm8iIqIkkNnER44caZz7LrO/h4WFGcuNlSpVypjVXc6hl/PgiYiIyL25bPEth3X69Gnky5fP6qYQERERERGRm7N8qbFLly4Zy7EcO3Ysap8slSKzx2bOnBn9+/c3CmmHdevWoXTp0siWLRvGjRsXtf/bb781vl++ilWrVsV6TCIiIiIiIiK3LL6l8JbJaGIWybdv30aTJk2MJVu2bNmCPXv2GEuXCFme5vnnn0ebNm2MZVNkrdE1a9YYt02aNMmY7Ea+ij///NNYeoWIiIiIiIjIrYtvWbNU1i+NacWKFbh69arRq120aFEMHz4c06ZNM26TYjtPnjx4//33Ubx4cWO9UcdtgYGBxjqo8vXkyZMcbk5ERERERERqWDrb+dSpU40h57169Yo1cU2NGjWQLl0647os3yK9347bnnrqKXh4eBjXq1evjkGDBhnbGTNmxMGDB5EpUybMmTMHr7/++kOfX3rZ5eIQERFhFO9Zs2aNeg4iIiIiIqKkkNNog4ODjY5ET0/Lz/wli1hafEvhfa9r167F2i9FsKybKmukym1lypSJuk0K7TNnzhjbMhRdCvUhQ4YYBXWGDBke+vwjRozA0KFDk+14iIiIiIiI4sIRuu5N3Trf3t7exhqpMfn5+Rlrpt57m2O/GDhwoLGcyy+//GL0XFerVg3FihUzesHj6sV+55130Ldv36jrMty9QIECOHr0KPz9/Y19cl/5dEp6xWNO/ObYHx4eHusx49ov++Q2Z/uFPH589ssHEdIOZ/vvbWNc++1wTHJdsnW2PI9djymutms/JscntQEBAXEeq92Oyc45OfKQ31Hy/a5wTA/br/WYHFnIyCt5Tlc4pvi0XeMx3blzJyoLxz67H5Odc7o3D1c4JrvmJBf5+1Y6pRx/D9v9mCIjPXH9egRu3JC/FYEbN4Bbtzxw65bsD8fNmx7GPrlNLrL/xo0IhITAuMig19u3PYzLzZuRd69H3+b4PrmEhyfnSNhrAPIb7wtyX+qKb1kbVWY7j0l+gfv4+Bi3yaRr9+53kD9G5b65cuVC7dq1sWnTJuzduzdWb3lMUsjfW+g7HkdmTifryC/4EydOIHfu3FF/1JK1WcintMzCesxDD2ahB7PQhXnoykI6lfLmzWtpFmFhMrrV+eXq1Qfvl0I65kWKYjvjqa3uTV3xLUuMybngDvILQ4aRS+Ett33//fdRt23fvt34ZeKwe/dulCtXDgcOHEDZsmWNQv3y5cupfgxERERERK7kzh0gKAi4ckUmOjYv8dmWAvrWLagltbCfX/QlbdrY1x+2X/rxpC9QLg/aDgkJR5MmVh8tWU1d8V2rVi3j3O4ZM2agc+fOxmzn9evXNz6tk2XG3njjDfz2229Gz/aoUaPQsGHDqPsuXrzYmIDtyy+/xJEjR4xzKhxDZYmIiIiIyCSjyKWP6sIFWc7X/Oq43HtdLtITbUVhLGcgJsfFWfEs+9KkMZ8npckHEkTqim85r/vrr782JlDr37+/cd7I2rVrjduyZcuG8ePHo1GjRsa5K1JYO9YAl/OLZLh4mjRp0LRpU9StW9c451t6wMme5Jx+0oFZ6MI89GAWejALXZiHdeS85bNngdOngVOnZLWg3Jg928PYJ/MUnz9vFteXLsk8IinXDpn7WM7ilH6wTJmcX2SKpQfdJosfJXVi8GX/LsOinT9j0LODUCBrgeQ6PKJE8Yi8d3YDJc6dO4etW7cay47JBGoxyVD0ffv2oWbNmvGa1Ty+pMddCniZmEJmUiciIiIi0iI0VGbLBo4dA44fNy9SYEtRLRcpuJP7jMuc2W6hSL4riPTLYxTTWbKYlwdtyyXGtEyWCngrAFdvmd32jxV5DC2qtkCLKi1QKFuhVG0H6wxSXXxbwfGmkGXNOFzdWjK7peQgE99xLURrMQtdmIcezEIPZqEL80g8OTdaCuqYxbVjW75K73VS/3KXodY5ctx/KZLzBB7J/h2ypT2BTGlOIW3kKaQJPQGPsLvjpcsPBcp/ALtpML4BVu1Zdd/+qgWr4vU6r+OVJ19JlXYEBQUZ7wkW3+5N3bBzDfh5hI4MeM6+DsxCF+ahB7PQg1nowjweTGbrPnwYOHgQOHTI/Oq4SC92Ysm5y3nyADIXsXyVS+7cEQgPP4nq1fMhf34vY1+cdd+GPsDJxcBtGbvu5Haf2CNR7eJ/jf4Xq/jOlSkXLgRfwNbjW9Hl2y5GL7h/OnOJ4ZTE+oIEi28iIiIiomQkdZacV717N7Bnj3nZv98ssGXYeGLqMOmdLlQIKFjQvDi28+c3C24Z8n3vQIPw8Ejs3HkF5cvLsm8PeYJSbwN+Oc3Gnf0VuHE0+rbstYASr8OOahaviVz+uXDu6jl4enji3LVzaFm1JZ4u8zT80/qnSuFN5MDim4iIiIgoEaROlZnApbiWQttRbMvXhJ57LVMcFSsGFC0au7iWrwUKmMPFU1SWasC5VcDuYUBEGOCZFoi4BXimAR6dmjpTgqcAL08vtKraChNXT8STxZ7En4f/xMKtC+Hj5YNvX/nW6uaRm2HxTWplzJjR6ibQXcxCF+ahB7PQg1no4op5RESYw8S3bzcv27YBO3aYPdzxJRORFS8e+yIFt3yV2yzL4tImYFMX4Opu83qeRkDQLuDmCbNHPFMJ2NmLj7xoFN/bT27Hd12+Q/vp7fH95u8RERmBWV1mwduLJRGlDk64FgNnISQiIiKisDCz99pRaMtFCu3r1+N3fzm3ukwZQFa8dXwtVcrs3Vblzg3g3/eA/Z9KPz7gmx2oNhG4fgT4939A2rzAc/uANMm3upBVkwAW/V9RHLt8DPs+2oe9Z/ei9VetERYeZvSKz+46G2m806RoG1hnkODHPHG8Qcn6DC5cuIAcOXJwplSLMQtdmIcezEIPZqGL3fKQbiiZ6GzjxuiL9GrLxGgPkz07ULGiWVw7Cm25pFQvdrJmcXYVsLk7cOOYeb1wB6DKOMA3K/B3J3OfXLd54S3k2H/q+ZNRdJfIWQIlc5XEoh6L0GJyCyzYusDoAZ/TbU6KFuCsL0iw+HaCgwF0ZCBrvWeX/9XIUsxCF+ahB7PQg1nooj2P27eBf/4B/v47utiWNbIfRs6/rlzZvFSpYn6VHm7Np0I7zeJ2ILCtL3D07vnO6QoA1b8C8jwT/T3VPgNKvw0ElIerKJe3nHFxaFKxCX54/Qe8MPkFLNq2yOgJn/fqPPh4p8wC5awvSLD4JiIiIiKXXjtbCux168yLbD+sV1vOw65ePbrIrlTJnE3c1qT4O7kQ2PImEHJBzj4FSvQEKg67v3c7TSaXKrzj0rhCYyx5fQmaf9EcS3YsQasvW2H+q/Phm8bX6qaRi2LxTUREREQuQwrrP/4A1qwxi+3Nm81zuOMi85E9+ihQo4Z5ke1s2eBabp0BtvUETi01r2cqDTw6Dcj+GNzds+WfxdI3lqLZF83w478/GkPRZUg6C3BKCSy+nfDQPH7IjTLIkiULs1CAWejCPPRgFnowC/fOQzp0ZXmvlSuBX381C+4H9WzL8PHatYGaNYHHHjMnQnvoGtg25YFI5A/9BZ4rRgBh18xlw8q8A5T9H+DF4tKhYbmG+OnNn9BkUhMs37nc6Alf/Ppi+KXxS7bn4O8nEpztPAbOQkhERESkn6yhvWqVWXDL5fTpBw8hl2JbLrVqmcW3Wwg+BGzqBlxYa17PWt3s7Q6IPu+ZYlu9dzWem/QcboXeQsOyDY1zwtP6JM8C66wzSLD4dvKmuHLlCgICAqxujluTGSFPnTqFfPny2WKmVFfGLHRhHnowCz2YhXvkIWts//gjsHSpOaw8rsmjZRK0hg2B+vXNgjtvXriXiDvAvnHAzsFAeAgiPNMCFT+GZ8legKeLdvEno7X716LxZ41xM/Qmni7ztHFOeDrfdEl+3KCgIGTOnJnFt5vj/1BO8PMIHRkEBgYyCwWYhS7MQw9moQezcM08pLiWydHeecdcvqt4ceDtt4H162MX3mnTAs88A4wbB+zaZS4bNn060LatGxbeV3YAvz4K7BhoFN6ROethX5EFiCzBwju+6pSsgxW9ViC9b3qs2rPKGIp+8/bNJD8ufz+R4DnfRERERKRCeLhZXM+da/Zwnz/v/PtKlACaNDGL7iefBPyS79RcewoPAXZ+COwdBUSGA2kCjDW6Iwq2R6h8IkEJUqtELfza+1c8M+EZrN63Go0nNsaynsuMgpwoKVh8ExEREZFlpENQeril4J4/Hzh37v7vkbmqZHK0pk3NS8mSVrRUqQsbgE1dgeAD5vX8LYFqE4G0ucxPMyhRnij2hFmAf/qMMRS90WeNsLzncmTwu2dZNqIEYPHtBGcj1JFBrly5mIUCzEIX5qEHs9CDWdgvDym4d+wwC+5584Djx+//HhlO/vTTZrHduDGQM2fKttt2ZPbyHYOAg5PN62lzA9W+API3i/oWvjeS5vFij2Nl75Vo+GlDrD+w3ijEZUh6Rr+MCX4sZkCCE67FwFkIiYiIiFLOmTPArFnAN98A+/bdf7uPD/Dss8BLLwHPPQdkYCejc6eXAf/0AG6eMq8X7QpUHg34cMLglLD56GY0GN8AV29dxWNFH8MvvX5BprQJqxVYZ5DghGtOhHOIjooMDh8+zCwUYBa6MA89mIUezEJ3HrdvAwsWAI0aAfnzA4MGxS68ZY1tOXdbCnI5x3vJErP4ZuHtRMgF4M82wLomZuGdoShQbzXw6FSnhTffG8mjeuHq+K3vbwhIF4C/D/+NhhMa4urNqwl6DGZAgsPOSa3g4GCrm0B3MQtdmIcezEIPZqEvj717galTge++AwID7/8eWXNbZiRv0QLIls2KVtqIDFQ9NhvY1hu4fRnw8ARKvQ2UHwJ4P3gZLL43kke1QtXwe9/fUX9cfWw8shENJjQwzgmXgpwovlh8ExEREVGyCA0FFi3ywNixxbB16/1LWxUoAHTsaF6KFrWkifZz4ziwuQdwdoV5PaAC8Og0IGs1q1vmdqoUrILVb69G/fH1jaHoT497Giv7rETm9JmtbhrZBIedExEREVGSnDgBvPuuWVy3beuJrVujx4zLMmAvvwz89htw9Cjw4YcsvOMlMgLYPwlYXtYsvD19gYrDgGe2sPC2UKUClYwCPFuGbNhyfIvREx54w8nQDiIn2PPtBGcj1JFB/vz5mYUCzEIX5qEHs9CDWVhn82Zg3Dhg4cL7V7UqWTISr73mYfRyZ2bHYMJc3WsuH3bpL/N69ieB6lMB/1IJehi+N1JGhXwVsKbfGtQdWxfbTmxDvbH1jHPCs2bIGud9mAEJznYeA2chJCIiInowKbKXLjWL7j//jH2btzfQrBnQowfw1FPm+tyUAOGhwJ6RwO6PgYhQwDsDUGkkUPw18zxvUmX36d1GAX4h+IJRkEsBnj1jdqffyzqDBN/FTnA2Qh0Z7Nu3j1kowCx0YR56MAs9mEXquHULmDQJKF7cnCQtZuGdPTsweLA5/Hzu3HDkybMPERHMI0Eu/wP8Wg3Y+YFZeOdpDDTeA5R4PdGFN98bKats3rJY238tcvnnwn+n/jML8WsXnH4vMyDB4pvUCgkJsboJdBez0IV56MEs9GAWKUcmyx49GihcGOjZ0zxv26FMGeDrr82ie8gQIHducz/zSIA7N4BtbwMrawBBOwHfbMDjs4HaPwHp8yf54ZlFyiqduzTW9luL3P65sev0Ljw15imcv3be6maRUiy+iYiIiOg+V66Yk6MVLAgMGGCuwe3QoAHwyy/Arl1Aly7mpGqUCOd+B5aXB/aNMydYK/Qy0HgvUKgtx+zbSMlcJY0CPE9AHuw5u8cowM9dPWd1s0ghFt9EREREFKvolpnLpeiWoeRyXUgt2KoVsH078OuvQMOGrA8TLfQKsLELsLo+cOMokC4/UHs58Ph3gB8XPbejErlKYF3/dciXOR/2nt2LOmPq4EzQGaubRcpwwjUnEyEEBQUZX8k68mMZHByMjBkzcnZIizELXZiHHsxCD2aRPK5fBz77zBxiHhQUvd/Ly1wq7J13gFLxmGybeTzEiUXAljeBEOkZ9QCKvw5UGgGkyZjsT8UsUt+Ri0eMnu8TgSdQPEdxY1b0vJnzGhOtBQQEcMI1N8fiOwbOQkhERETu5vZt4KuvgGHDgAsx5opKkwZ45RVzyHmRIla20EXcOmsW3ScXm9czlQIe/RrI/oTVLaNkduzSMaPn+/jl4yiWoxjWvL0Gmbwzsc4gDjt3hrMR6shg586dzEIBZqEL89CDWejBLBJHXq4ZM8zZy3v1ii68PT2Bzp2BAweAL79MeOHNPO4h/VyHpwHLypiFt4c3UPZd4NntKV54MwtrFMpWyBiCXjhbYRy6cAi1x9TG8UvHrW4WKeBtdQOI4sL/KPRgFrowDz2YhR7MImHWrgX69AF27Ii9v3VrYOjQ+A0vfxDmcVfwYWBzd+D8avN6lmrAo9OAzBVSrQnMwhoFsxY0JmF7auxTxlD0Jl81ATJY3SqyGnu+iYiIiNzEoUNA8+bAU0/FLrwbNwa2bQPmzUt64U0AIu4Ae8cCP5c3C2+vtEDlMUCDv1O18CZrFchaAOv6rTOGnh8PPA40Bo5dPmZ1s8hCLL6JiIiIXJxMoPb22+a63EuWRO+vXBlYswZYtszcpmRw5T9g5WPA9n5A+C0gZ12g0U6g9NuAJwedupt8WfIZPeDFshUDMgLPTX7O6Akn98QJ12LgbOd6yI9lSEgI/Pz8ODunxZiFLsxDD2ahB7OIm/yVN2sW0K8fcPFi9P5cuYDhw4EOHczZzJP3Od00j/DbwK6PgT2fAJF3gDT+QJWxQJFXLFuTzW2zUGj/yf0o1bcUEABjOTKZBV16xMm9sOeb1PLx8bG6CXQXs9CFeejBLPRgFvfbvRuoUwfo2DG68PbzA95/Hzh40JxULbkLb7fN4+KfwIpKwO6PzcI7/wvAc3uBol0sXwzd7bJQKlemXMByoGTOkjh15RTqjK6Dg+cPWt0sSmUsvp2IiIiwugluTzKQ2TmZhfWYhS7MQw9moQeziO3GDWDgQKBSJWD9+uj9rVoB+/cDH34IZEjBiZ/cKo+wYGBLT2BVTeDaPsAvJ/DkQqDmIiBtbqtb515ZKGdkcAtY1mMZyuYpi9NBp1F7dG3sP7ff6qZRKmLxTUREROQifvwRKF0aGDUKuHPH3Fe0KLBiBTB/PlCggNUtdCGnfwaWlwUOTJIB3ubwcuntLtDC6paRYjky5sDqt1ejfN7yOHv1rLEe+N6ze61uFqUSFt9ERERENnfpEtC2LdC0KXDypLnP1xcYMgTYtQt45hmrW+hCQi4Bf7UD1jUGbp4E0hcG6q4CakwDfDJb3TqygRyZzAK8Qr4KOHf1HJ4a8xT2nNljdbMoFbD4JiIiIrKxBQvMWcznzIne16ABsHMnMHiweZ43JdPsdcfmAMtLA8dmAx6eQKm+QOOdQK76VreObCZbxmxGAV4pfyWcv3be6AHfdXqX1c2iFMbZzmPgbOd6yI+lnBvj6enJ2Tktxix0YR56MAs93DWL8+eBN94AFi2K3pc5M/DZZ8DLL1s3z5dL5nHjJPBPD+DMcvN6QHmg+tdAturQzCWzsKmrV68iICDA+JopU6ao/YE3AvH0uKex7cQ2ZMuQDb+//bvRI06uiT3fpFZoaKjVTaC7mIUuzEMPZqGHu2Uxbx5Qtmzswrt5c2DPHqBdO8sn2HadPCIjgANfmOd2S+Ht6QNU+AhouEV94e1yWbioLOmz4Le+v6FawWq4dP0S6o6tix0ndljdLEohLL6d4IyQOjLYv38/s1CAWejCPPRgFnq4UxbXrgHt2wMvvQRcvmzuy5YNmDvXLMRl/W6ruUwe1/YDv9UGtrwB3AkGsj0OPLsDKPce4GWP5btcJgsX8KAMMqfPjFV9V6F64eq4fP0y6o2rh23Ht6Vq+yh1sPgmIiIisoG//jKXD/vuu9jLh0lv94svWt/b7TIiwoDdw4GfKwIX/wC8MwBVJwJPbwD8S1vdOnJRAekCsLL3StQoUsMYii4F+NbjW61uFiUzFt9EREREismSYTJrec2awNGj5j45ZVSKcFk+LHt2q1voQi5vAX55BPj3XSDiNpD7WaDxbqDkm+YEa0QpyD+dP37t/SseL/o4gm4God7Yevjn6D9WN4uSEX+LkFpeXl5WN4HuYha6MA89mIUerpqFFNu1agFDh8qwVXPfE08AO3aYk6ppZbs87twEtg8AVj4KBP0L+GYFHpsF1FkOpLf34ui2y8LNZUqbCb/0/gVPFnsSV29dRf3x9bHpyCarm0XJhLOdO5nt/N5ZCImIiIhS29KlQMeOMkuyeV1qKFk67J13AG9vq1vnQs6vATZ1A64fNq8XbANUnQD45bC6ZeTGdcb1kOtoPLEx1h9Yj4x+GY0e8ceKPpYqbaWUw55vJ/h5hI4M5JcUs7Aes9CFeejBLPRwtSzCwoABA4BmzaIL7yJFgD/+AN5/X3/hbZs8QoPMovv3umbhnS4fUPsn4InvXabwtk0WbiChGWTwy4Cf3/oZT5V8CsEhwWgwvgH+PPRnirWPUgeLbyc4I6SODI4cOcIsFGAWujAPPZiFHq6UxZkzQL16wOjR0ftatwa2bwdq1IAt2CKPk0uA5WWAw1+b14v3MM/tzvscXIktsnATickgvW96LOu5DPVK18P129fRcEJDbDiwIUXaR6mDxTcRERGRAmvWAJUrAxvu/m2dJg3w2WfmMmI8Gy6Z3DoHbGgFbGgO3DoLZCwB1F8PPPIFkIYvMumTzjcdfnrzJzxd5mncuH0Dz3z6DNbuX2t1syiRWHwTERERWUhGo44cCdSvD1y4YO7Lnx9Yvx7o2ZNLiCXbi3x4htnbfXIh4OEFlP0f0OhfIEdNq1tH9EBpfdJi6RtL0bBsQ9wMvYlGnzXC6r2rrW4WJQKLb1LLz8/P6ibQXcxCF+ahB7PQw65Z3LoFtGsHDBoUPZt5gwbAtm32GWauPo/rR4A1DYBNrwChV4DMVYBntgAVhwFeitrpDllQkgrwJW8sQaPyjXAr9JYxGdtve36zulmUQJztPAbOdk5ERESp5fRpoHlz4J8Yy/jKbOYyqRpXh0oGEeHAgc+Af98Dwm+ahXb5D4FSfQBP5bPWkctJrjrjdthttPyyJZb9twx+afyMHvEGZRska1sp5bDn2wlOSqEjg8uXLzMLBZiFLsxDD2ahhx2z2LwZeOSR6MI7fXpg8WJgyBD7F94q8gjaCax6HNjW1yy8c9QBGu0EyvR3q8JbRRZkSK4MfNP4YuFrC/F8xecREhaC5yc9j192/ZIsj00pj8W3ExwMoCODkydPMgsFmIUuzEMPZqGH3bL4/nugVi3g7FnzesGCwF9/mb3grsDSPMJvA/8NBlZUAS5vNidRqz4FqPc7kLEY3I3d3huuLDkzkAJ8wWsL0Lxyc9y+cxtNP2+K5f8tT7bHp5TD4puIiIgoFcjf3u+9B7z8MnD7trmvZk2zF7xCBatb5wIu/g2sqAzs+hCIvAPkawY03gsU6wZ48E9eci0+3j6Y130eWlRpgdA7oWj+RXP89O9PVjeLHoK/iYiIiIhSWGgo0LEjMGxY9L6uXYHffgNy5LCyZS4g7Dqw5S1g1RPAtb2AXw7gyQVAzcVAujxWt44oxaTxToM53eagVdVWCAsPQ4vJLbB0x1Krm0UPwOKb1MqYMaPVTaC7mIUuzEMPZqGH5iyuXQMaNwZmzTKvy9Jh48cDU6YAPj5wSamWx5lfgOVlgQMTZWwBUKST2dtdoCXXaLPBe4OSpwD/vtv3eOmRl4wCXCZjW7xtsdXNojhwtvMYONs5ERERJaczZ4BGjYB//zWvy6pPs2cDL7xgdcts7vZlYGsf4NjdTzTSFzLP7c79tNUtI7KkzrgTfgcdp3fE95u/h5enF+Z2n4uWVVsm+/NQ0rDn2wnOCKkjg3PnzjELBZiFLsxDD2ahh9Ys9uwx1+p2FN5ZspjDzF298E7RPKTP6NhcYFnpu4W3B1CyN9B4FwtvG7033FFKZ+Dt5Y2ZXWaifY32CI8Ix0tTXsK8f+al6HNSwrH4doKDAXRkIP9ZMAvrMQtdmIcezEIPjVls2AA88QRw8qR5vVAhc0Zz2efqUiyPm6eAdc8Df7UBbl8E/MsCDf4Gqo4HvNMn73O5CI3vDXeVGhlIj/eMzjPQ6fFORgHedmpbzNk0J8Wfl+LPfRY6JCIiIkoFv/xiLhsWEmJer1IFWL4cyJXL6pbZVGQEcGgKsH0AcCcY8EwDlH0PKDMI8HLRk+aJklCAT+s4DZ4enpj+53S0m9YO4ZHhaFejndVNIxbfRERERMln0SKgTRsgLMy83rAhsGCBTHpldcts6toBYHM34MJ683rWGsCjXwMBZa1uGZFanp6emNphqlGIT90wFR2mdzCGvXd4vIPVTXN7LL6d8ODsmCoyyJIlC7NQgFnowjz0YBZ6aMli5kygc2c5t9O83rKlObmaq85onqJ5RIQBe8cCO4cAEbfNYeUVhwPF3wA8vZKzuS5Ny3uDUr++kAL8y3ZfGueCT147GZ2+6WT0gHd+onOqtoNi42znMXC2cyIiIkqML74A3ngj+nqnTsDUqYA3uzkSLnAbsKkLcGWHeT13Q+CRL4EMhaxuGZHt6gwp9XrO6YnP13xufAAwtf1UdKnZJdWen2LjhGtOcEZIHRmcOHGCWSjALHRhHnowCz2szmLUqNiF95tvAtOmuW/hneg87twCtg8Efq1uFt4+WYDHZgJ1VrDwtul7g6JZlYEU3BPbTMRb9d4yCvGuM7tiyvoplrSFWHw7xcEAOjIIDAxkFgowC12Yhx7MQg8rsxgyBBg4MPr6O+8An30mQz7hthKVx/l1wIqKwN5RQGQ4UOBFoPEeoHB7qR5Ssrkujb+n9LAyAynAJ7w4AX3q9zGuvzrrVWMoOqU+N/1MloiIiChpPvwQGDo0+vrw4WbxTQkQehXYMcCczVykzQs88gWQ73mrW0bkUqQAH9t6rDEJ25iVY/D67NeN5cjerPum1U1zKyy+iYiIiBJICu3Bg6OvT5gA9OplZYts6NSPwD89gFtnzOvFXgUqjQR8/K1uGZHLFuCjWo4yCvCRv4w0zgWXArxXff7ySi0svp3gjJA6MsiVKxezUIBZ6MI89GAW7puFnOP97rvR18eNY+GdoDxunQe2vgWcmG9ez1gcqD4VyFk7VdvpDvh7Sg8tGUg7RrwwwijAh/88HL3n9TYK8L4N+lrdNLfA2c5j4GznRERE9CBjxwL9+kVfHz069nV6APmT8+hMYFsfIPQK4OEFlO4PlPsA8E5rdeuI3KrOkBJw8I+D8dGyj4zr0iPev2F/q5vl8tx4OpC4hYeHW90EtycZHD58mFkowCx0YR56MAv3y+LTT2MX2iNGsPCOdx7XjwFrngE2djIL78yVgYb/AJVGsPBOQfw9pYe2DKQH/MOmH2JIkyHG9QELB+CTFZ9Y3SyXx2HnpFZwcLDVTaC7mIUuzEMPZuE+WUyeDPTuHX39o4+AQYNS9CldI4+IcODAJOC/d4E7NwAvP6D8EKBUX8AzjdXNdAv8PUUPMvj5wfD09MQHSz/AO4vfMYagv9s4xnk1lKxYfBMRERE9wJw5sdfxlonW3nvPyhbZRPABYFNn4PIm83qOWua53ZlKWN0yIorh/efeh5eHF95d8i7eW/KeUYB/0OQDq5vlklh8ExEREcXhl1+ADh3M05WF9HbHnOWc4ub5z6tm4Z0mE1BpFFCsG+DBMx6JNPpf4/8Zk7ANWjzIOBc8IjICg5sMVjNRnKtg8e0Ef8h0ZJA/f35moQCz0IV56MEsXD+Lv/4CXngBuHPHvP7qq+YSY4w8fnlE+r8Gj8yVgDIDgHT5rG6WW+LvKT3skMHAZwcaBXj/hf0x9KehRg+4nBduh7bbBWc7VzwLIREREVlj506gVi0gKMi83rIlMHcu4OVldcuIyI7sVGeMXzUefeebS4+98+w7GNZ8GAvwZMKxPzaYjdBdM9i3bx+zUIBZ6MI89GAWrpvF0aNAw4bRhXf9+sB337Hwji++N/RgFnrYKYM+T/fBhBcnGNsjVozAoEWDjKXJKOlYfJNaISEhVjeB7mIWujAPPZiF62Vx/jzw9NPA2bPm9erVgR9+AHx9k+Xh3QbfG3owC0qMXvV7YWKbicb2qF9HGUPRWYAnHYtvIiIiIlmK+jrQqBFw+LB5vXRpYPlyIEMG6HZ+LfC9h3mZkwb4uQJw5tfYa2zLbURECfBm3TfxxctfGNtjV441hqKzAE8aFt9ERETk9mREaNu2wLZt5vX8+YFffwWyZYM9yIziLa8AzU4AJXoCf7QAbp5J2mP+Vgc48k1ytZCIbKhHnR74qv1XxvaE3yag97zeLMCTgMW3E7LQPFmfQZEiRZiFAsxCF+ahB7NwrSz69AF++snc9vcHVqwwC3D78AB8AoC0uc0lvdIXBi6ss6QlfG/owSz0sHMG3Wt1x9QOU41J1z77/TP0nNOTBXgi2fenIAVxNj8dGchMkMzCesxCF+ahB7NwnSw+/RSYaJ7aCG9vYNEioGxZ2JunNxAR+uDvufgnsKIyMC8d8Et14Ooec//m18xh6lK8b+xsbss+h8v/AL8+CizwB9a/AIRejb7t1FJ4LCuFTCtyw2N1/ejed+lBl550Bw6FTxX8PaWH3TPoWrMrpnWcZhzH52s+x+uzX0dERITVzbIdFt82n43QlTPYuXMns1CAWejCPPRgFq6RxdKlZq+3w5QpQL16sLezq4Br+4DsT8T9PZERwIaWQL4XgOePADlqAdv6mbdVGW8OYZf7V/vc3JZ9IjQIWPsskPtZoNF/QNg1YPvbd2+7AvzxIiJKD8Te4j8hwjc7sPvjVDhgigt/T+nhChl0fqIzZnSaYRTgX677Eq999xoL8ATyTugdiFKLK/ySchXMQhfmoQezsHcWW7aY53k7Rk+++y7QuTPsKewqsCAACA8BvHyBapOAjMUefJ9ntwM+mYEgKaKDgOD95n7vtADSAh7egHc6czi7w+nlgEcaoPxg6coDSvcD/u4APCr3ywA0PY5Irwzw3jIfHnduALcvpuxx00Px9xQlp46Pd4SXpxc6Tu+IqRumIjwi3BiSbudh9amJxTcRERG5nePHgeeeA27eNK+3aQN89BHsyzsj8OwOwDMNkDaPWRg/iIcnsG88cGQakL4IkD4/EBmPIu3WKbOgXpg5ugf9TrBZ9MuAyn8HwfPUj8jtVQDwzxn3Y4bffeGJyHba1WgHTw9PtJ/WHtP/nG4U4NM6TTOKcnowFt9ERETkdkuKPf+8uaa3ePJJYMaMh9erqkkxnaFQwpYnO/w18NxewC8HcPpnIHDr/Y9576RKafMBWaoCT8y7uyPS7HWX3vBjs4BLGxHx3BEc2ncUFfz+gMephY4HMwt1h3ufi4hspe2jbY1i++WvX8a3f3+LiMgIzOg8gwX4Q3B8gBMcNqEjg5IlSzILBZiFLsxDD2ZhzyykluzUCfjvP/N68eLAkiWAry/cS1hw9DncMvHa9r73F9oZigLnVwO3zgLnfgMiwoG8jYEbJ4DLmwGvtMCJhcCaZ+4W4fKYkfC8E4TS/sfgsWeYuV+kywtc22OeIx5yEdgzKvWP2Q3x95QerpjBi4+8iDnd5hgF96yNs9BhWgfcCb9jdbNUc72fAnIZPj4+VjeB7mIWujAPPZiF/bIYNsyczVxkygT8+COQNSvcT55ngNzPAL9UMWcyL9oNuHUGuHV3OIAo9x5w/TCwtODd2c4jzPO/a/8I7BsL/FgEOLEAqPWjObt6kY5A+kLA8jLw2T8CKNYduLrXHJKesy6QqwGwvDywtjFQ9n9WHr1b4e8pSkmtqrXC/Ffnw9vLG99v/t4Yis4CPG4ekVykLcq1a9fg7++PwMBAZM5891wmsnR2zvLly8PLi8NXrMQsdGEeejAL+2UhhXbTpua2DDGXdb0bN069droLvjf0YBZ6XLlyBVmyZMHVq1eN5d9czdIdS9Hqy1YICw9Dq6qtMLvrbKTxTmN1s9RhzzcRERG5vD17gHbtYveAs/AmIkoeTSs1xaIei+Dj7YMFWxegzdQ2CLsTZnWz1GHxTURERC7tyhWzxzv47mnOL74IDBpkdauIiFxLk4pN8MPrPxgF+KJti9D6q9YIvRNqdbNUYfFNRERELuvOHeCll4BDh8zrlSoB06bZfGZzIiKlGpVvhKVvLIWvty+W7FhiDEW/HXbb6mapwXO+nZzzHRQUZHwl68iPZUREhDEzpAf/QrIUs9CFeejBLOyRxcCBwKi7E2tnywZs2QIULGhNO90F3xt6MAs95FzvgIAAlz3n+14rd69E08+bIiQsBI3LNzaGpPumcbdlJe7Hnm9SKzSUw1S0YBa6MA89mIXuLJYujS68vb2BhQtZeKcWvjf0YBZkhQZlG+CnN39CWp+0WL5zOZp/0dwoxN0di28n5BNCsj6D/fv3MwsFmIUuzEMPZqE7iyNHgI4do79nzBigdm1r2udu+N7Qg1no4Y4Z1C9TH8veXGYU4Ct2rUCzz5vhVugtuDMW30RERORSQkKAli1lmKd5vVUr4K23rG4VEZH7qVu6Lla8tQLpfNLh192/GkPRb96+CXfF4puIiIhcSu/ewPbt5nbx4sDXX3OCNSIiq9QuWRu/9PoF6X3TY9WeVWgyqYnbFuAsvkktLy8vq5tAdzELXZiHHsxCXxbffQd89ZW5z8/PPM/bDeY2UofvDT2YBWlQs0RN/Nr7V2TwzYDV+1aj8cTGuBN+B+6Gs507me3cXWYhJCIiciW7dwPVqwM373aozJgBdOpkdauIiFhnOPx16C888+kzCA4Jxrb3t6FygcpwJ+z5doKfR+jIQH5JMQvrMQtdmIcezEIPyeDMmWto2TIyqvB+5RUW3lbhe0MPZqEHMzA9XuxxbHl3C77r8h0q5qsId+NtdQM0csfZCDVmcOTIEZQvX57DpSzGLHRhHnowC11ZdO9+B/v2mSd2V6gATJpkdavcF98bejALPTTXF/LBwJYtW7Bq1SrsP7gfIbdTZ0mwH/EjXIWvjy+KFSmG+vXr47HHHoNHHBONsPgmIiIiW5s92wPLl2cxtjNmNM/zTpvW6lYREeknhffkyZPxxbQvkD5neuSrmA8+vj5WN8t2bobexIotKzBv6Tx0aN0BAwYMcFqAs/gmIiIi2zp8GHjjjeg/cGSyNZnhnIiIHm7Tpk1G4V2ze03UfKlmnD22FL8PMv756R/MHD8TVatWNXrB78VzvkktP5mmllRgFrowDz2YhbXCwoC2bYHr180/Fjt0iECbNla3igTfG3owC3qQlStXImPejCy8k4G8ftWfr45sxbMZr6sz7Pl2gufE6MigVKlSVjeDmIU6zEMPZmG9Dz4ANm82t4sVk/O82aegAd8bejALPbTWF/sO7EOBigVYeCejgpUKYu+mvU5v4/9SNpsQwZ0yuHz5MrNQgFnowjz0YBbWWr0aGDnS3Pb2lnMWg5A+PbPQgO8NPZiFHlozkMnV0vilsboZtrLn0B50fbdrnLf7+PkgJMT5pHUsvp3gUgA6Mjh58iSzUIBZ6MI89GAW1rl0CWjfXjIwr3/0USSyZTvGLJTge0MPZqGH6gyUdXpfDLyItm+3fei++NwvOb8/OV5PFt9ERERkG/L3a5cuwJkz5nWZz+bttxX/UUtEREmWNSArpn48NdUe86MvPsK6zeuQ3Fy++JZP+4iIiMg1fPkl8OPdpWGzZQNmzgQ8Xf6vGSIi9+bp6Yn0adOrf8yHPicU+/rrr5E/f36kS5cOderUwZEjR4z9u3btwiOPPILMmTOjf//+UcM4ZFa5bNmyYdiwYcb1/fv3Y/369ZYeAyVeRlmslVRgFrowDz2YReo6eBDo1y/6+vTpQO7c5jaz0IV56MEsKKE2bNmA/qP6xzovvOPAjjh9/rRx/eTZkxgycQi6vNsFI6eOxOWgy1HnQr/18VuxHkuGdcvw7ofZtmcb+gzvg+7vdzeeP75DxB92vwdx9pjTFk4z9u09vBdfzfvK2JZ9Ll98Hz58GB9++CGWLl2Kffv2oWjRoujUqRNu376NJk2aGGunbdmyBXv27ME333xj3Gfq1KnGRYp2sWjRIrRs2dJlZiN0J5KBZM4srMcsdGEeejCL1BUeDnTqBNy8aV5/7TWgSRNzm1nowjz0YBZ62CmDquWq4sLlCzhzwTy/Z8e+HcidPTfy5sxrFOIjpoxA+RLl8cnbnxhDt8fOGJukCeWuBl/FxFkT0aRuE3zY60OjoE7J+z1I+6btjaHoJQqVQOcXOhvbss/li+/t27ejRo0aqFKlCgoUKIBXXnkFhw4dwooVK3D16lWMGzfO+GUyfPhwTJtmfhoRGBiIihUrGj3hN2/eNIYS+Pr6usxshO5EMjh37hyzUIBZ6MI89GAWqWvMGOCvv8ztokWB0aOjb2MWujAPPZiFHnbKIJ1fOlQoWQGb/zPXctyycwtqVKphbG/bvQ1pfdOiRcMWyJ4lOzo064BzF8/h8MnDiX6+f/f9azxW3Rp1kStbLuOxU/J+D+KTxscYii4flji25WtyUbvOd5kyZbB69Wrs2LEDhQsXxhdffIGnn34a//77r1GUy1B0UaFCBaP32zGs5sKFC8b2vHnz8OKLLz7wOaQXXS4O165dM77euXMH4fIR+93F0qWIlzdMzFkKHfsd3/ew/bJPbnO239kbMq798oMg7XC2/942xrXfDsckjyn/WWTNmtVljimutms/Jrnf2bNnkT17dpc5pphttNsxOfKQU2zk+13hmB62X+sxObLIkiUL0qRJ4xLHFJ+2W3FMu3Z54IMPzOf18IjEtGkRSJtW2mB+v/y/7chCHtcOx+SKOTn235uHKxyTXXOS6zGzcIVjsmtO8r6wEym2f173M5576jns2LsDrZ5pZeyXIeZS8DpIYZo5U2ZcvnIZmTJkivUYt0Oj66wHCboWZPSgO+TMmjNF72cl1cW3DBmvXLmycV0K8E2bNuGTTz4xth3kjSM/4FeuXDGK7Vq1aqFr1644evQoOnfu/MDnGDFiBIYOHXrf/r1790adHyO/rKTn/dSpU0bPukOuXLmMy7FjxxAcHBy1X85Rl4Lx4MGDsdZ3K1KkCDJlymR8UBDzjV6yZEn4+Phg586dsdpQvnx5hIaGGuetO8hxyn55Psf578LPzw+lSpUyXoOYE8zJMcjoAPlAQgpZBzsck9xfBAUF4fTp0y5xTHbNSf7jkDYLVzkmO+ckecjzyH/qYWFhLnFMds1J/pCSx9q9e7fRFlc4Jo05hYV54JVXyiA01Pzjt0OHC/D3PwtpluOYZGScIwv5u0D7MbliTjGP6fjx47HycIVjsmtOefPmxY0bN6KycIVjsmtOqpcac6Jq2aqYOn+qMeN3zmw5jYvImjlrrHO4w+6EGUVwtszZjO2Yx3n01NF4PVemDJmMx3CQQj4l7xcfxodXcJ5ZmWJl8PWwrxP3uJFKfxI2b96M5s2bY/HixcYP8KhRo4wJ1erWrWv8wSnDzmO+sTZu3Gj8gpEh6XKO+IkTJ/ClTIkKYNmyZUgrH5HHo+dbHuvixYvGZG52/4Qtrv12OCZ5TPmFWLZs2aj72f2Y4mq79mOS+8l/2jLKxNEeux+TnXNy5CH/4TvaY/djeth+rcfkyEJ+T7HnO+WO6YMPPDB8uPmcZctGYtOmCPj5xf5++aPYkQV7vq0/pnvzcIVjsmtOcv2///6LysIVjsmuOUkxLqMIpVaRwl+LF1q9gHSV06Hxm43vu238N+Ox++BuNK3fFE2eMifZkHO++37SF/Vq1EOtR2ph6e9LceTUEXzc62NcCLyA/iP7Y9w744zCePS00cYkbJ+++2ms3vJ7SW963xF90aVlF5QsXBKT50zGgWMH8P3Y76O+Rwr+XsN6xdoXn/s9iLPHdJAPHuTDhDbPtcGpc6dQtlh0TfLPzn8wd/lcvNvjXWTxz3LffX+f8TuO/3Icq1assk/P95w5c/DSSy/h0UcfNa5//PHHmDx5stEbLrOdxySfODl6Sv39/Y3zwmVCNhmWKdasWYNGjRrd9xxyPrizc8K9vb3vmxTh3gLwYZMnpOR+R2//veJqY0L3azgmuR5z+KArHNPD2qj1mOQ45FNj+eoqxxST3Y7JkYfjDwdXOKb47Nd4TI4s5P8MR4+S3Y8pqfuT+5g2bwZGjjT3eXvLsmIeSJ/+/seXDBxZxHxMjceUlLbY5ZhSMo+49jMn5/ulAHSWRUq3Pa797pyTZGA3j1V6zCg0a1Q0z/cWfr5+GNR9EKYvnG4MSy9RuATe7vy2cbxy3vUzNZ/B0ElDjeL7hQYvGMX3w2QNyIo3Xn4Ds3+abXSyPln1SaOITqn7xUez+s0w6btJxuzt2QKyYfTA0fC8O13azVs3cfbi2fs+vLF1z3evXr2M4SSzZs2K6pXOkSOHsYyYFOEyxEzI8HIZon79+nXjB//y5cv47rvvjMJNhpiI4sWLo337h89SJ88hxbu2T6SIiIjcza1bQJUqwL595nU5S+yDD6xuFRFR4mitM+Lq+T5/+Tz2H9mP1RtXY0jPIZa1z44e1POtdrbzmjVrGkPOx48fj++//x7NmjUzzuV46623jB/eGTNmGN8ns53Xr18/6hOn2bNno23btggICDDOOZKLbCfEvUNHKPVJBnLqALOwHrPQhXnowSxS1nvvRRfe1aoB77wT9/cyC12Yhx7MQg+7ZTB2+lh8v+x7vNjowRNYU8KoHf/QokULY+KzCRMmGLM0litXDj/88INxXp2s492mTRv079/fGOKwdu3aqPvJkAM5n6JOnToYMsT8lObzzz9P0HMrHQzgVhyTSsl5/GQtZqEL89CDWaScTZuACRPMbTk7bOZM4O5p9U4xC12Yhx7MQg+t9YXUVndu3z8T+6j+oyxpjyu4E3onai4Y2xTfcv7E+++/b1zu9fzzz+Pw4cPYunWrseyYnMvi8Pbbb0fNkii3ExERkX2EhgJdu0ovUfRw89KlrW4VEZFrKla4GDbs2WB1M1zKyd0nUa5wOae3qR12/jAyBL1x48axCm8iIiKyt08+kXW9zW055/vuZ+pERJQC5PTdy0cu49/f/rW6KS5h7597cXbnWeN1tVXPt5Ucs9aStRnIByzMwnrMQhfmoQezSH67d8vqJua2TOUybZo5y/nDMAtdmIcezEIPrRnUrl0brZq0wvxh8/HP0n9QsEJBpPFLA+hsrloydF96vE/vOI3GdRvj2Weftdds51bQOgshERGRq5MVW554wjzfW8gEa8OHW90qIiLXrzNkMriff/4ZK1euxL5D+3D79m1EgiViQvj6+KJ4keJ4uv7TaNKkSZxLy7H4dvKmkIkpMmfObHVz3Jqsm3fs2DEUKlQozrUWKXUwC12Yhx7MInl9+inQu7e5XaIE8O+/gJ9f/O7LLHRhHnowCz2uXLliLIWssfim1GPbc77J9QUHB1vdBLqLWejCPPRgFsnj6FHgf/+Lvi7DzeNbeDswC12Yhx7MgkgPFt9ERERkGRl/1707cPOmef2NN4Ann7S6VURERMmPxTcRERFZ5ttvgd9+M7fz5wdGjLC6RURERCmDxbeNZiN0twzy58/PLBRgFrowDz2YRdJdugT06xd9/csvgYwZE/44zEIX5qEHs9CDGZDgUmNOeHryMwkNGXANdx2YhS7MQw9mkXQDBwKXL5vbL70ENGqUuMdhFrowDz2YhR6sL0jwpyCOmSHJ+gz27dvHLBRgFrowDz2YRdL88Qcwfbq5LRP/jhuX+MdiFrowDz2YhR7MgASLb1IrJCTE6ibQXcxCF+ahB7NInLAw4LXXoq/Let65cyftMZmFLsxDD2ZBpAeLbyIiIkpV48cDu3eb29WqxS7EiYiIXBWLbyIiIko1x48DQ4ea23IKpEyy5uVldauIiIhSHotvJzghgo4MihQpwiwUYBa6MA89mEXivPVW7DW9q1ZN+mMyC12Yhx7MQg9mQMIjMjIyki+F6dq1a/D398fVq1eRSWZ/ISIiomSzdCnQrJm5Led4790L+Ptb3SoiopTHOoMEP4JxgrMR6shg586dzEIBZqEL89CDWSTM9etAz56xz/tOrsKbWejCPPRgFnowAxIsvkkt/pLSg1nowjz0YBbx99FHwMmT5naDBkDr1sn7+MxCF+ahB7Mg0oPFNxEREaWo/fvNnm7h6wt8/jng4WF1q4iIiFIXi28iIiJKMTKzTO/e5treon9/oFgxq1tFRESU+jjhmpOJEIKCgoyvZB35sQwJCYGfnx882D1iKWahC/PQg1nEz08/Ac8/b27nz29OspY+ffI+B7PQhXnowSz0kInWAgICOOGam2PPN6nl4+NjdRPoLmahC/PQg1k8WEiI2evtMGZM8hfeDsxCF+ahB7Mg0oPFtxMRERFWN8HtSQYyOyezsB6z0IV56MEsHk7O8z5yxNyuXRto1SplnodZ6MI89GAWejADEiy+iYiIKNmdOgV8/LG57ekJfPYZJ1kjIiL3xuKbiIiIkt2AAcDNm+b2668DFSpY3SIiIiJrsfgmIiKiZLV+PTBnjrmdNSswdKjVLSIiIrIeZzuPgbOd6yE/lnJujKenJ2fntBiz0IV56MEsnLtzB6haFfjvP/P6l18Cr76ass/JLHRhHnowCz042zkJ9nyTWqGhoVY3ge5iFrowDz2Yxf2mTo0uvCtXBrp2TZ3nZRa6MA89mAWRHiy+neBshDoy2L9/P7NQgFnowjz0YBb3CwoCPvgg+vrEiYCXV8o/L7PQhXnowSz0YAYkWHwTERFRshg+HLh0ydx+6SXgiSesbhEREZEeLL6JiIgoyY4eBT791Nz29QVGjLC6RURERLqw+Ca1vFJjrCLFC7PQhXnowSyiDRok55aa2336AIUKpe7zMwtdmIcezIJID8527mS2c85CSEREFH9//RU9xDx7duDQIYD/jRIRRWOdQYI9307w8wgdGcgvKWZhPWahC/PQg1mYZA4h6el2+Oij1C+8mYUuzEMPZqEHMyDB4tsJzkaoI4MjR44wCwWYhS7MQw9mYZo3D9i82dwuWxbo0iX128AsdGEeejALPZgBCRbfRERElCi3bpnnejuMHQt4e1vZIiIiIr1YfBMREVGiTJgAnDhhbj/zDNCwodUtIiIi0ovFN6nl5+dndRPoLmahC/PQw52zOH/eXNdbeHoCY8ZY2x53zkIj5qEHsyDSg7Odx8BZCImIiOKnRw/gyy/N7ddeAyZPtrpFRER6sc4gwZ5vJzghgo4MLl++zCwUYBa6MA893DmL/fuBqVPN7QwZgKFDrW2PO2ehEfPQg1nowQxIsPh2goMBdGRw8uRJZqEAs9CFeejhzlm8+y4QHm5uDxgA5MhhbXvcOQuNmIcezEIPZkCCxTcRERHF28aNwKJF5nbOnEDfvla3iIiIyB5YfBMREVG8SMfNwIHR14cMAdKnt7JFRERE9sHim9TKmDGj1U0gm2Wx8dRGVJ1SFRlHZET9mfVx+tppuKLE5NFpSScMWTsEGtT5pg6+2fENXIFd3hvJZcUKYP16c7t4caBLF6jhblloxzz0YBZEerD4dsLLy8vqJrg9yaBo0aLMQgG7ZHEz7Caazm2KNx95E3te34OMvhnRc0XPWN9TaEIhrD22FnZmhzyksJYCOy7L2i5D2/JtYXd2yCI5yTnegwZFX5dlxtKkgQruloV2zEMPZqEHMyDB4tsJzkaoI4Nz584xCwXsksXei3sRFBKEzpU7I79/fnxQ6wOER96dEcqF2CWPB8ngkwE+Xj6wO1fIIiFmzwZ27jS3q1cHWrSAGu6WhXbMQw9moQczIMHi2wnORqgjA/nPgllYzy5ZSMHt6eGJj9d/jDsRd1A5d2UsfWmpcdsz3z0Dj6EeOH71OJ769ilj+5M/Pom67y+HfkH5yeUR8EkAuv7YFbfv3I66bea/M1F8YnFkG5UN//v9f1Gvg/TsdvuxG0pNKoUco3MkaEj3R+s+Qs4xOZF5ZGbj+cIjoj8kmLBxAgqML4Cso7Kix7IeCAsPi3VboU8LodT0Unh9+etRt0mbRv85GgUnFETusbnx6cZP49UOuf+AVQOM+8iogPm750fdJiMEZN/hwMNoMKsBas2oFXXb9dDreGnhS8g0IhPyjM2Dyf9Mjhr2L69t56Wdse74OmPb72O/eA07D7kTgjeWv2G8ziUnlcTivYujbnO0rd7Mekg3LB0azW6EW2G3YDW7vDeSQ0gI8P770ddHjQI8PKxskftmYQfMQw9moQczIMHim4hcQo70OTCr+SyM+WsMin1WDLP+nRV126LWi3Bl4BXkz5QfP7X5ydjuU6OPcduhwEPGcPVej/bCP93+webTmzH6r9HGbeuPrzeK43ENxuH3Dr/j23+/xeyds6Med+n+pfim2TdY/OJiTNo8CT/s/eGh7fz54M8Y9dco/Nz2Z2zptgV/nPgDi/aaU0fP2TkHI/4Yge9e+A5/vvIn1h5fi8//+TzWbd82/RYzas4wilvHbbP+m4XhfwzHnBZzsKDVAvxv9f+Mx30YebyFexZiZbuVGN9wPNr/0B5HrxyNVRA3n9cczUo1M253+HDdh8brtrPHTsxvNR99V/bFmeAzeCTPI8Zr+3mjz/FE/ieM7fP9zscrv/4r+2Pr2a3445U/MLL+SHT4oQO2nd0WdXu/lf3QtXJXbO622dg/Z9eceD0uJY/PPwdOnDC3GzUCate2ukVERET2w+KbiFxGyzItcbz3cXSq1Andl3U3CjqR3ic9AvwCjJ5xGfIs277evsZt83bNQ6VcldC1SlcUz1ocrz/yOn7c/6NxmxTwzUs3R5OSTVAxV0W0r9A+6jbRvWp31MhXA08WeBIvl3/ZKMYfpnbB2jjR+wQKZy6MvZf2Gvv2X9pvfJ2xYwZ6P9obtQrWQqlspTD7hdl4PP/j991WOGNhzGw2M+o2Kb67V+luXJe2NCnRJFY74yL36/94f5TPWd44zsq5KmPFoRVRt5+/cR7vPPmO8ZpUzVM1ar/sW9dpnbEtPeOOr16eXsZrmy5NOnh7ehvb/n7+D21HRGQEpm2fhnENxxnHLcV+m3JtMGXrlFjZtinfBuVylEPdwnVx8urJhz4uJY+gIGDYMHNbertHjLC6RURERPbkbXUDNPLQNJbOjTPIkiULs1DALllIz6sMRS6apSiG1BmCOoXqoO63ddHz0Z4o4F8gzvudunYK289uN4acCxmyLgW6cVvwKaw5uibqttDwUFTIWSHqvtKT7pA3U14cOHbgoe28dPMSOi3thD0X96Banmrw8/aLOjf95LWTKJK5SNT3VsldJWrbcZsjj3x58sHT0zPqGP488Se+2vpVVI+1FLAPI/frv6o/3vn9nahJ6+R1izma4KVyL913v+3ntqPHcnNIvBT8ab3TJun8enlNbt25FevYJUcZeeAQs11yvngkrB++Z5f3RlLJEPMrV8zt9u2BCtFvATXcJQu7YB56MAs9mAEJFt9OOP6gJWszKFAg7oKJUo9dspAe7B8P/Ig1HdcY16WHWHpfZRI2R/EtPd/3nnOVL1M+o2d7bIOxxnU5/1qKUOO2jPnwatVX0ecxc4i6FJvSS+twLOhY1Lb0xObKkOuh7Ry8drBRtK/usNr4j7j1gtZRt8n+mI85+7/ZWHNsDb5+/uuo2xx5xLxNjuGVSq+gVdlWxv3knPX4TGgm9/uwzod4LP9jxnX58CKTb6ao26WodvbHwitLX8F7td4zRgvI6yHnfcdkvM4JKI6zpctmPNeRK0eiXkPZLuhfMOp7YrZLC7u8N5Li/Hng07tTCPj4AB9+CJXcIQs7YR56MAs9WF+Q4E+BE5yNUEcGJ06cYBYK2CWL+kXq46+TfxnnRsv63jIBWu6MuY1hzDF7U1ceXomzwWfx+5HfjX3Ss7vh+AYcvHwQvl6+mLh5ojFhmOhQsYMxlPzc9XNGIf/u6neNi8PX27/G3yf/Ns6v/n7X92hR+uHTPweHBhu9xPKYcp64TCzm+EDglcqvYMKmCcbj7bu0zzj3vGjmorFuW39sPVb/tzrWbR0qdMDc3XMRfDvYeCwZcu84H/xB5H5yHrt8qCCF9wvzX8AP+36I1zFI77p8GPDasteM4ekxP9SQdu08v9MYii49/HIsDyLFepfKXdD3177GEPwl+5bg+53fo1vVbtDMLu+NpJAh5jfNz6Lw6qtAwejPQ1RxhyzshHnowSz0YAYk2PPtBGcj1JFBYGAg8ubNa3VT3J5dspDzlmc0nWH0LMsQdMds5zF7gEc/PdqYyGvM32OMc7XrFalnFOQzm880Jg2T3tZH8z5qTFwmahasiaF1hhoTkUmxXK9wPUxpEn0ecusyrdF2cVtj9m85H/u5Es89tJ3v13rfeLxSn5fC00WeNop/GcYtZFs+GGizqI1R3Mp55P0e7xfrtpcXv4zrt6+jQ6UOUbe1q9AOZ6+fRePvG+Pa7WvGkPMPn3p4F+WgJwcZM7jXnFHT+ECgY8WO6FGtx0PvN/HZicYEaDKzfOdKnY3zsOUYnir8lHH7EwWeMB6r8leVjcL622bfxvoQxJlRT4/C2yvfxuPTHzd6wiWTmMPuNbLLeyOxTp4EJpsT2SNtWuB//4Narp6F3TAPPZiFHqwvSHhE8ichyrVr1+Dv72/8ksqcObPVzXFr4eHh2LlzJ8qXLw8vLy+rm+PWmIVzslyWTOwml9TEPPRw9Sy6dwemTjW3Bw3SPdGaq2dhN8xDD2ahx5UrV4zz769evYpMmfSdSkWpg8POiYiIKJaDB4Hp081t+Ruxv7lwABERESUBh507wdkIdWSQK1cuZqEAs3Bubae1ljwv89DDlbMYMkR6zMztfv2ALFmgmitnYUfMQw9moQczIMFh506GnXM4CBERuatdu8zlxOSvg2zZgCNHgIwZrW4VEZG9sc4gwWHncZwfQ9ZncPjwYWahALPQhXno4apZvP++WXg7zvW2Q+HtqlnYFfPQg1nowQxIsPgmtYKDg61uAt3FLOybx/nr57H66GrOsppCXO298c8/wJIl5naePMDrr8M2XC0Lu2MeejALIj1YfBMRubDev/ZGvZn18Mkfn1jdFLKB996LvS1LjBEREVHyYPFNROTCnin6jPH1vTXvYc3RNVY3hxRbvx5YudLcLlQI6NLF6hYRERG5FhbfTnA2Qh0Z5M+fn1kowCzsnUeHih2MtcgjIiPw0qKXcPra6RRvo7twtffG4MGxZzv38YFtuFoWdsc89GAWejADEpztPAbOQkhEruhm2E08Nu0x/Hf+PzyR/wms6bgGabzSWN0sUmTtWuCpp8ztEiWA3bsBby5GSkSUbFhnkGDPtxOcjVBHBvv27WMWCjAL++eRLk06LGq9CJl8M+HPk39i0G+DUrSN7sKV3htDh8ae7dxuhbcrZeEKmIcezEIPZkCCxTepFRISYnUT6C5mYf88imUphm+afmNsj9s4Dov2LEqBlrkfV3hvSK+3XBy93i+9BFtyhSxcCfPQg1kQ6cHim4jITTQv3Rz9HutnbHde2hkHLh+wukmkgN17vYmIiOyCxTcRkRsZUX8EahaoieDQYLSc39I4H5zcl6v0ehMREdkBi28nPD35smjIoEiRIsxCAWbhWnl4e3pjXst5yJk+J3Ze2Ikey3uA826673vDVXq9XSELV8I89GAWejADEvwpcIJLAejIQGaCZBbWYxaul0fujLkxt+VceHp4Yua/MzF129RkbaO7sPt7Y9061+n1tnsWroZ56MEs9GAGJFh8O8HZCHVksHPnTmahALNwzTzqFKqDYXWHGds9V/TE1jNbk6mF7sPu7w1X6fV2hSxcDfPQg1nowQxIsPgmtfhLSg9m4Zp5DHhiAJqUaILQ8FC0XNASgbcCk+Vx3Yld3xvS671mjWv0ets9C1fFPPRgFkR6sPgmInJTMuz822bfonBAYRwLOoYOP3RARGSE1c2iVOBKvd5ERER2weKbiMiNZU6bGYtaL4Kvly+WH1yOT/74xOomUQpzxV5vIiIiO/CI5DS3Ua5duwZ/f38EBQUZX8k68mMZEhICPz8/TlBhMWbhHnl8ve1rdPupm9EbvrLdStQrUi/ZHttV2fW9UbdudPE9axbQrh1sz65ZuCrmoQez0OPq1asICAgwvsokeOSe2PNNavn4+FjdBLqLWbh+Hl0qd0GnSp2MYedtFrXB6Wunk/05XJHd3huu3OtttyxcHfPQg1kQ6cHi24mICJ7zqCEDmZ2TWViPWbhHHtIj8nmjz1EhZwVcvHkRLy58EWHhYcn6HK7Gju8NVz3X245ZuDLmoQez0IMZkGDxTUREhnRp0hnnf2fyzYQ/T/6Jgb8NtLpJlIzWr3fdXm8iIiI7YPFNRERRimUphm+afmNsj984Hgv3LLS6SZRMPvooevu991yn15uIiMguWHwTEVEszUs3R7/H+hnbryx9BQcuH7C6SZREmzcDv/1mbhcpArRpY3WLiIiI3A9nO4+Bs53rIT+Wcm6Mp6cnZ+e0GLNwzzzuRNxB3W/rYsOJDSiXoxw2dd1kDEsne743mjYFfvzR3J4yBejWDS7FTlm4A+ahB7PQg7Odk2DPN6kVGhpqdRPoLmbhfnl4e3pjXst5yJk+J3Zd2IUey3sYf8SR/d4bO3dGF9558wIdOsAl2SELd8I89GAWRHqw+HaCsxHqyGD//v3MQgFm4b555M6YG3NbzjXW/p7570xM3TY1xZ/TTuzy3hg+PHq7f3/A1xcuxy5ZuAvmoQez0IMZkGDxTUREcapTqA6G1zWrt54remLrma1WN4kS4OBBYP58czt7dtcbbk5ERGQnLL6JiOiBBjwxAM+XfB6h4aFouaAlAm8FWt0kiqdPPpHeFnO7Tx8gHU/bJyIisgyLb1LLy8vL6ibQXczCvfOQSXq+bfYtimQugmNBx9Dhhw6IiOTwOe3vjRMngJkzzW2ZQ/T11+HSNGfhjpiHHsyCSA/Odu5ktnPOQkhEdL/tZ7fjsWmP4Xb4bQyrOwz/q/k/q5tED9CzJzBpUvS63jHX+SYiotTFOoMEe76d4OcROjKQX1LMwnrMQhcr86icuzI+b/S5sf3+mvfx+5Hf4c40vzfOnwe+/trclqHmvXrBpWnOwh0xDz2YhR7MgASLbyc4G6GODI4cOcIsFGAWulidR5cqXdC5Umdj2HmbRW1w+tppuCurs3iQceOAkBBz+7XXgGzZ4NI0Z+GOmIcezEIPZkCCxTcRESWI9H5XzFkRF29exIsLX0RYeJjVTaIYAgOBL74wt318gLfftrpFREREJFh8ExFRgqRNkxYLWy9EJt9M+PPknxj420Crm0QxTJwIXL9ubnfpAuTJY3WLiIiISLD4JrX8/PysbgLdxSx00ZBHsSzFjBnQxfiN47Fwz0K4Iw1ZxBQcDHz6qbktExwPGAC3oS0Ld8c89GAWRHpwtvMYOAshEVHCDFg1AKP/Go2MPhmxpfsWlMhawuomubVRo4CBdwcidOwIfPON1S0iIiLBOoMEe76d4IQIOjK4fPkys1CAWeiiLY/h9YajVsFaCA4NRov5LXAj9AbchbYsbt0yJ1oTHh7AO+/AbWjLwt0xDz2YhR7MgASLbyc4GEBHBidPnmQWCjALXbTl4e3pjbkt5iJn+pzYdWEXeizvoaZt7pbF9OnmEmOiZUugZEm4DW1ZuDvmoQez0IMZkGDxTURESZI7Y27MazkPXh5emPXfLEzZOsXqJrmdO3eAMWOir7tTrzcREZFdsPgmIqIkq12otjEEXbz1y1vYcmaL1U1yKwsWAMeOmdsNGwKVK1vdIiIiIroXi29SK2PGjFY3ge5iFrpozaP/4/3RtGRThIaHouX8lgi8FQhXpyELGck4cmT0dceEa+5GQxYUjXnowSyI9OBs5zFwFkIioqQJCglCtSnVcPjKYTQq3gg/tfkJnh78nDcl/for8Mwz5vYjjwCbNpkTrhERkR6sM0jwLyInOBuhjgzOnTvHLBRgFrpozyPALwALWy+En7cffj74M0ZsGAFXpSWLe3u93bHw1pIFmZiHHsxCD2ZAgsW3ExwMoCMD+c+CWViPWehihzwq5aqEzxt9bmx/sPYD/H7kd7giDVn88w+wZo25Xbw40KwZ3JKGLCga89CDWejBDEiw+CYiomT3SuVX8EqlVxARGYE2i9rg9LXTVjfJJcXs9e7fH/DysrI1RERE9CAsvomIKEVMajTJ6AW/ePMiWi9sjbDwMKub5FL27wcWLza3c+UC2re3ukVERET0ICy+nfBwxxPmFGaQJUsWZqEAs9DFTnmkTZMWC1sthL+vP/46+RcGrBoAV2J1FrKut2MUY+/egJ8f3JbVWVBszEMPZqEHMyDB2c5j4CyERETJb+m+pWg2zzwZeX7L+WhVtpXVTbK9s2eBQoWA0FBA/rs6cQLw97e6VUREFBfWGSTY8+0EZyPUkcGJEyeYhQLMQhc75tG0VFMMeNzs9X7lx1ew/9J+uAIrs5gwwSy8RY8eLLzt+L5wZcxDD2ahBzMgweLbCQ4G0JFBYGAgs1CAWehi1zyG1RuG2gVr43rodbSY3wI3Qm/A7qzK4upV4MsvzW0fH6BXr1R9epXs+r5wVcxDD2ahBzMgweKbiIhSnLenN+a2nItcGXJh98XdeG35a/xDJJGk8L52zdzu2BHIndvqFhEREVF8sPgmIqJUIYX3vJbz4OXhhe/++w5fbf3K6ibZTkiIOeRcyNw9/fpZ3SIiIiKKLxbfTnA2Qh0Z5MqVi1kowCx0sXsetQrWwoh6I4ztXr/0wpYzW2BXVmQxaxZw7py5/cILQIkSqfbUqtn9feFqmIcezEIPZkCCs53HwFkIiYhSnvy388L8F7Bk3xIU9C+Ird23Imu6rFY3S73wcKB0aeDgQfP65s3AI49Y3SoiIooP1hnkFj3fJ0+eTPB9wuUvHLKUZHD48GFmoQCz0MUV8pBP/2c0nYGimYvi+NXjaP9De0RE2m8W2NTOYsmS6ML7qadYeLva+8KVMA89mIUezIBsU3wPHDgQTZo0ibq+a9cuPPLII8icOTP69+8fNWnPypUrkS1bNgwbNsy4vn//fqxfv96ydlPSBAcHW90EuotZ6OIKeQT4BWBR60Xw8/bDikMrMHzDcNhRamYxZkz09sCBqfa0tuEK7wtXwjz0YBZEeqgvvv/77z988cUX+PTTT43rt2/fNgrxqlWrYsuWLdizZw+++eYb47apU6cal6+//tq4vmjRIrRs2dLS9hMRkXMVc1XEF42+MLY/WPMBfjvym9VNUuuvv4CNG83t8uWBBg2sbhERERG5VPEti9F3794dffr0QZEiRYx9K1asMM6VGDduHIoWLYrhw4dj2rRpxm2yjmHFihWNnvCbN2/C09MTvr6+Fh8FERHFpXPlzuhSuQsiEYk2i9rg1LVTVjdJpZi93m+/bc50TkRERPbiDcW+/PJL7Ny50yjAf/zxRzzzzDP4999/UaNGDaRLl874ngoVKhi93yJjxoy4cOGCsT1v3jy8+OKLD3x86UWXS8yJEBxFv+O8DDk3UYp42RdzbjrH/nvP34hrv+yT25ztdzxnfPZ7eXkZ7XC2/942xrXfDsck2/nz5zf23/v4dj2muNqu/Zjka968eY3HcJVjitlGux2TIw8RV9vtdkwTGkzA1jNbseP8DrRe0Bq/t/8dPl4+6o/JkYV8TcmfPTnPe8kSL2M7T55ItG4t/0fx/XTv9zuycJVjsnNO9+bhCsdk15zkEjMLVzgmu+Z07/eQe1JbfF+/fh2DBw82eryPHz+OWbNm4eOPP0bNmjVRuHDhqO+TN478gF+5csUotmvVqoWuXbvi6NGj6Ny58wOfY8SIERg6dOh9+/fu3YsMGTIY21myZEGBAgVw6tQpo2fdQZZtkMuxY8dinUsjBWPWrFlx8OBBhMiCrHfJccjMhvJBQcw3esmSJeHj42N8yBBT+fLlERoaapy37iDHKfvl+Y4cORK138/PD6VKlTJeg5gTzMmHETI6QD6QOOdYm8Zmx3T58mWXOya75pQ9e3bjAypXOiY75yTPK/d3lWP6qPxHaBfUDn+f+htd53VF//L9bXNMp0+fTtGfvdGjCyMy0t/YbtnyLPbvNz9k5vsp+phkQik5JsnCVY7JzjmdOHHCeA5HHq5wTHbO6datW1FZuMox2TEnItVLjc2cOROvvfaa8QtcJlG7c+eO8QMub0ApqmXYecw31saNG41P9mRI+r59+4z7Sc+5WLZsGdKmTRuvnm95rIsXLxqTudn9E7a49tvhmOQx5ReZ/OJ13M/uxxRX27Ufk9zv0KFDxn9IjvbY/ZjsnJMjjxIlSkS1x+7H5LDs4DI0m9fM2J7zwhy0KtNK9TE5sihWrBjSpEmTIj97ly4BhQt74tYtD2TIEIljxyIQEJByx2TX95P8UezIQh7XFY7Jzjndm4crHJNdc5LrBw4cMP6eku9xhWOya05SjEtHBpcac29qe77lEy0ZXi6Ft/D29jaGmEthLcVxTPKJk3xKJWT9PDkvXCZkc9x3zZo1aNSo0X3PIeeDOzsnXN4wjl9QDvcWgDG/N7X3O3r77xVXGxO6X8sxySeU0sbkOFYtx/SgNmo+JvlDytWOycGOxyR5OIYTusoxiaalmmLgEwMx8s+R6LasGyrlroRS2UqpPibJwlFcJPRx4nNMU6YAt26Z2126eCBr1vi/Bu72fnJkEfN77H5MKbU/NY4ppfKIaz9zcr5fikvpaHL2t61dj+lB+zUfU1yPSe4lSROuyXAP+fQmJeTLl88YJhOTDD+fMGEC/v7776h9MrxcfqnIMBQhw5Sl1zooKMjoqZOL7CMiIv0+rvsx6hSqg+uh19FyfkvcCL0BdyUjJCdONLflb7jeva1uEREREaVa8S3F9ujRo401tmXCs9KlSxvnTKRPn94413rixIm4cSN5/lBq3LixcR6GDB2XXvDPPvvMmGzthRdeMIaHz5gxw/g+me28fv36UZ8mzZ49G23btkVAQIBRrMtFtomISD9vT2/MaTEHuTPkxu6Lu/HqslfvG4roLmbNAhwDvVq1AgoVsrpFRERElCrF9+TJk1GmTBmjp3ns2LFGAXz+/HmjV1mK8vfeew///POPUZDL+tpJJZMj/Pzzz/j222+Ncxtlne/58+cb52TLOt5vvvmmMax86dKlGDlyZNT9wsLCjPMp6tSpg127dhmXp556KkHPHddQFko9koF8sMMsrMcsdHGHPHJlyIV5LefBy8MLs3fOxpdbzPk73CkLOX0wxtQmxvJi5N7vCzthHnowCz2YAcVrwjU5Z6dLly7GLIHffPONMXvfg2zevBnt27dHq1atjNnJU4pMvLZ161bjvHAp1JODfKAg54xzIgQiIuuN+WsM+q/qbyw79kfnP/BI3kfgLpYtA5o0Mbdr1QLWrbO6RURElBSsM0g89CMYmSJfhpivXbv2oYW3qF69Ov78809jSQPHutkpQZYTkKHpyVV4x3TvzIeU+iQDWeaBWViPWejiTnm8/djbaF6qOULDQ9FyQUtcvnnZbbIYMyZ6u1+/ZH94l+NO7ws7YB56MAs9mAHFq/iWpQm++uorY826uMhU+tITLRfZluHgck42P9WhpOAvKT2YhS7ukofMIDuj6QwUy1IMJ66eQPsf2iMiMvZyLq6YxZYt0T3dJUvKHCjJ/hQuyV3eF3bBPPRgFkR6xPvkA1ln2xlZb1smNKtWrZpxkZnGx48fn5xtJCIiN+Xv54+FrRbCz9sPKw6twLD1w+Dqxo6N3u7b15zpnIiIiOwv3v+lz5o1C7179461zJeQ87plhnGZkVwu0uP90UcfpURbiYjIDVXMVRGTG082tgevHYxVh1fBVR07BixYYG5nzw60b291i4iIiCi5eMf3Gzt37mzMJD5v3jxjBvInn3wSL730Et555x1jaS/p8Za522QSAZn53M44G6GODGSNdmZhPWahi7vm0alSJ/x54k98vf1rtF3cFtu6b0N+//wul8Wnn8oQUXP7zTeBtGmT7aFdmru+L7RiHnowCz2YAcVrtvO4/PXXX8bSXzly5ECHDh2ifqDkurd3vGt6lbMQBgUFGV/JOvJjKfMHyM+VnPdJ1mEWurhzHiF3QvD4tMex/dx21MhXA+s6rTNmQneVLIKCgPz5gevXAZlm5cQJs/ebHs6d3xcaMQ89mIUe0kEpp+pytnP3Fu+PYBYuXGis4S0Tr/n6+hq93TLjeMeOHY11t8eMGWNMuGbXwjsm+SVF1mcgs3MyC+sxC13cOQ8573th64UI8AvAxlMb0X9lf5fKYsoUs/AWnTqx8E4Id35faMQ89GAWejADSlDx/dprr2HAgAEIDg7GzZs3sXTpUrz77rvGbUOGDMHw4cOxbds29OjRA4sWLeKrS0REya5I5iKY2Wymsf3Z5s8wb9c8uILQUHPIuZDOqT59rG4RERERWVZ8t2vXDv369UPdunWNy/PPP298zZMnj3G79Ih37doVkydPRrFixZK9oURERKJJySYY9MQgY7vrT12x79I+2N3cucCZM+b2888DJUpY3SIiIiJKbvEeIz5hwgSj5/v48ePGsIncuXOjSJEiTr+3YsWKydlGIiKiWD6q+xE2nd6ENcfWoMX8FtjUdRMy+GSAHcnMK2PGRF/v18/K1hAREZFlE66dPXvWmN180CCzlyE+bt++jZEjR6J///5Ia6OpWjnhmh6cIEQPZqEL84h2/vp5VP6qMs5eP4u25dviu+bfpeprklxZrFoFNGhgbj/6KCArerp5tAnG94UuzEMPZqEHJ1yjeA07l+J51apVaN68Oa5cufLQV03W+q5Xrx4OHjyINGnS8FWmRAuVkyBJBWahC/Mw5cyQE/NazoOXhxe+3/k9Jm8x1wK3Wxbjx0dvv/02C+/E4vtCF+ahB7MgslHxLZ/Q/Prrr8Z53GXKlMGoUaNw8uTJ+77v0KFD+OCDD1C1alU0bdoUs2bNsu3M55yNUEcG+/fvZxYKMAtdmEdsNQvWxMj6I43t3r/0xubTm22Vxd69wIoV5nbBgkDz5snXPnfC94UuzEMPZqEHM6B4T7gmRfTo0aPx+++/G0V2tWrVUKBAATz66KN45JFHkDdvXjz11FPGMIrNmzcbw82JiIhSQ9/H+uKF0i8gLCIMrRa0wuWbl2EXn30Wvd2zp/x/a2VriIiIKCUl6L956fmeMmUKvvrqK5w5c8Y4H1zOIZHJ1+RCRESU2uQ8xunPT8d/5//DocBDaPdDOyxvuxyeHvFe0MMSly8D335rbmfIAHTtanWLiIiIKCV5JvYPHentlh7wKlWqsPCmFOHl5WV1E+guZqEL87ifv58/FrVehLTeafHLoV/w8fqPU+V5k5LF1KnArVvmdufOAOf5TBq+L3RhHnowCyIbzXbuThyznXMWQiIie/p2x7fotLQTPOCBX9r9ggZF704jrkxYGFC4MHD6tDnB2sGDQNGiVreKiIhSCusMErrH5FmEn0foyEB+STEL6zELXZjHg3Ws1BHdqnRDJCLRdlFbnLx6/wShGrJYsMAsvMXzz7PwTiq+L3RhHnowCz2YAQkW305wNkIdGRw5coRZKMAsdGEeD/fZs5+hSu4quHzrsjEBW2h4qKos5O+vmMuL9e6d/G1zN3xf6MI89GAWejADEiy+iYjIpfh5+2Fhq4UI8AvAptOb0G9lP2jy11/Ali3mdqVKQO3aVreIiIiIUgOLbyIicjmFMxfGrOazjO2Jmydi7q650GLChNi93nLONxEREbk+Ft+klp+fn9VNoLuYhS7MI36eK/Ec3nnyHWO7649dsffiXsuzOHYMWLzY3M6ZE3jppWRvktvi+0IX5qEHsyDSg7Odx8BZCImIXMudiDtoMKsB1hxbg9LZSmNzt83I4JPBsvb06weMHWtuf/gh8P77ljWFiIhSEesMEuz5doITIujI4PLly8xCAWahC/NIGG9Pb8xpMQe5M+TG3kt70f2n7sk242xCswgONtf2Fr6+wKuvJksziO8LdZiHHsxCD2ZAgsW3ExwMoCODkydPMgsFmIUuzCPhcmbIifmt5sPLwwtzds3BF/98YUkWM2ZIz4e53a4dkCNHsjSD+L5Qh3nowSz0YAYkWHwTEZHLe7LAkxj19Chju8+vfbDp1KZUff7wcOCzz6Kv9+qVqk9PRERECrD4JiIit9CnRh+0KN0CYRFhxvrfl25eSrXnXrYMOHzY3K5fHyhfPtWemoiIiFyh+D5w4ACGDh2Kdu3a4cSJE5g8eTKWLFmSfK0jt5YxY0arm0B3MQtdmEfieHh4YHrT6SiepThOXjuJdovbITwiPFWyiLm8WJ8+SXpKigPfF7owDz2YBZELzHa+evVqPPvss8asfTKRw/bt2/HDDz/g448/xvTp09G+fXvYDWchJCJyfTvP78SjXz+KW3duYUjtIRhcZ3CKPt+OHUDlyuZ2yZLAnj2AJ8edERG5FdYZJBL933+/fv3QuXNnnDt3LmoCgcGDB+Ojjz7CJ598YutXl7MR6shAfraYhfWYhS7MI+nK5yyPL5/70tgeum4ofj30a4pmMX587HO9WXgnP74vdGEeejALPZgBiUT/CbBv3z5juLnnPX9FPPHEEzh69KitX13ORqgjg5gf7JB1mIUuzCN5dKjYAd2rdEckIvHy4pdx4uqJFMni3DlgzhxzO3NmoEOHpLSa4sL3hS7MQw9moQczoCQV38WKFcPvv/8e61w68euvvxq3ERERafbps5+iSu4quHzrMlovaI3Q8NBkf44vvgDCwszt7t2B9OmT/SmIiIjIJrwTe0cZYt66dWvs2LHDKLynTJmCs2fPGhOuzZ07N3lbSURElMz8vP2wsNVCVJ1SFZtOb8Lbv76NiY0mJtvjh4QAkyeb215ewJtvJttDExERkTv1fLdo0cLo+ZZJAzJnzow5c+bg0qVLWLlyJVq2bAk7c/Tik7UZZMmShVkowCx0YR7Jq3DmwpjVfJaxPemfSZi7a26yZTF7NnDp7mpmrVoB+fIlT5vpfnxf6MI89GAWejADStJs566IsxASEbmnd39/F8P/GI70adJjc7fNKJO9TJIeT/5nlbW8d+82r2/aBFSvnjxtJSIi+2GdQSJJc66Gh4fjzJkzxvaFCxewfPly3Lp1y/avLGcj1JGBrB3PLKzHLHRhHinjw6c+RN3CdXEj7AZazm+J66HXk5SFTIniKLwfe4yFd0rj+0IX5qEHs9CDGVCSiu8jR46gTJky6N27t3H94MGDaNKkCSpVqoTjx4/b+tXlYAAdGQQGBjILBZiFLswjZXh5emFOiznIkzEP9l7ai24/dXvoa/ygLGIuL9anT0q0mGLi+0IX5qEHs9CDGVCSiu9evXohZ86ceP/996OWGDt8+DDy5s2Lvn378tUlIiJbyZE+B+a1nAcvDy/j3O/P//k8UY+zfz/w88/mdoECQPPmydtOIiIicrPi+48//sCQIUNQXk5qu6tw4cL43//+h7Vr1yZX+4iIiFLNkwWexKinRxnbfX/ti42nNib4MT79NHq7Z0/AO9HrihAREZErSXTx7ePjg9OnT9+3X/Z52/wvDc5GqCODXLlyMQsFmIUuzCPl9anRBy1Kt0BYRJix/velm3enLI9HFoGBwLffmtuypnfXrqnVavfG94UuzEMPZqEHMyCR6Cq5ffv26Nevn1Foy5BzsWHDBgwYMMC4zc48PZM0Dx0lUwbynwVZj1nowjxS5w+k6U2n47/z/+Fg4EG8vPhl/Nz2Z3h6eOLngz8bM6HLEmXOspg6Fbh509x+5RUgIMCaY3A3fF/owjz0YBZ6sL4gkeifghEjRqBu3bp4+eWXjeHmcpGiu06dOhg+fLitX12ZxZ2sz0DmEGAW1mMWujCP1JHJNxMWtV6EtN5psfLwSny8/mP8e/5fPDfnObT7oZ3TLMLCgIkTzftLB8dbb1l5BO6F7wtdmIcezEIPZkBJ6vlOkyYN5syZgw8//BDbt2839slM5yVKlOArS8kiODjY6ibQXcxCF+aROsrnLI8vn/sSHZd0xNB1Q1E4oLCx/5/T/+D2ndvw9vCOlcWiRXLqlbndpAlQrJhVLXdPfF/owjz0YBZEeiT55OzixYsbFyIiIlfToWIH/HniT0zZNgV9fu2DAL8ABIUEYffF3aiYo2LU98kKMjGXF7u7CicRERFR0oedb9u2DdWrV4evry+8vLzuuxAREdnZ55s/R7ph6RByJ8Q4zzswJBARkRHGbdvObov1vRs3Aps3m9sVKwJ16ljRYiIiInLJnu/OnTsbX2fPno3s2bPDlXA2Qh0Z5M+fn1kowCx0YR6p69adW5j530xjsrU0nmlw7fa1qOL7lUqvRGURs9e7Tx/znG9KPXxf6MI89GAWejADEh6RkTJYLuHSp0+PH3/8EfXq1XOZV/LatWvw9/fH1atXkSlTJqubQ0REFpN1vodtGIZlB5bF2l8sSzEc7HnQ2D5+HChSBIiIAHLmNK/7+lrUYCIiUol1BiVp2Hm1atWwZcsWl3wVORuhjgz27dvHLBRgFrowj9RVI18N/NTmJ2zrvs1Y+9vhcODhqCw++yzCKLzF66+z8LYC3xe6MA89mIUezICSNOx86tSpePbZZ+Hn54fXXnvNOPebKDmFhIRY3QS6i1nowjxSX+XclbGw9UL8d+4/dFzaEfky5TP2BwaGYto0cyih/Df42msWN9SN8X2hC/PQg1kQuUDx3bBhQ1y/fh19+vRBv379kCdPnlgTrR05ciS52khERKRChVwVsP3V7VG9GD/+mAVXr5rF98svAzlyWNxAIiIicr3ie8iQIcnbEiIiIhuRoebffx894SiXFyMiIqIUKb47duwIV+XpmehT4SkZMyhSpAizUIBZ6MI89FixwhMnT5qnXMnco+XLW90i98X3hS7MQw9moQczoCQV3+LYsWPGpGs3b96M2nfnzh388ccfmD59um1fYS4FoCMDzgSpA7PQhXnoMWGCR6zlxcg6fF/owjz0YBZ6sL6gJBXfc+fORYcOHSArlclF1hAMDAw0zgOXmdDtjLMR6shgz549KFOmTKy5BCj1MQtdmIcOO3YAa9aY2yVKROLZZ/lHlZX4vtCFeejBLPRgfUEi0eMfhg4divfffx8nTpwwhlGsX78ehw4dQokSJfDiiy/y1aUk4y8pPZiFLszDep9+Gr3ds2ckOJrQenxf6MI89GAWRHok+s8FKbrr1auH3Llzo1y5cti4cSOyZ8+O9957DxMnTkzeVhIRESlx7pxMtGZuZ8x4Bx06RFrdJCIiInLl4rtQoUJYuXKlsf3kk09i3bp1xrYU4xcuXEi+FhIRESny5ZdAaKi53aLFZaRPb3WLiIiIyA48IuWE7USYPXu2cc73N998YxTi9evXR9u2bfH3338jZ86cUcW4nVy7dg3+/v4ICgoyvpJ15McyJCQEfn5+nKDCYsxCF+ZhrZAQoEAB4OJFwMsrEnv33kaxYr7MwmJ8X+jCPPRgFnpcvXoVAQEBxldOgue+Ej3h2ssvv2wU3RkyZEDFihUxduxYY4bzAgUKcNg5JQsfHx+rm0B3MQtdmId1ZLi5FN6iZUugSJE0VjeJ7uL7QhfmoQezINIjSVPEPPHEE0bhLd58801s27bNGIpesmRJ2FlERITVTXB7ksHOnTuZhQLMQhfmYR0ZJzZhQvT1t95iFlrwfaEL89CDWejBDChJxfcHH3yAjBkzGssWOLsQERG5ktWrgZ07ze3HHgMefdTqFhEREZFbDDsfN24cevbsiYYNG/IcEiIicnkxe71797ayJURERORWxffTTz9t9HzXqVMneVtERESkzIEDwLJl5rZMuPbCC1a3iIiIiNxmtnOZ5fyVV15BiRIlkCdPnvtuXy3j82yGs53rIT+Wcm6Mp6cnR1ZYjFnowjys8eabwOefm9ujRwP9+jELTZiFLsxDD2ahB2c7pyT1fPfq1ctYXuzxxx/nm5lSRGhoqLE0BlmPWejCPFLXlSvAjBnmtqzp3bVr9G3MQg9moQvz0INZELlA8V2uXDl0794dLWWtFRfD2Qh1ZLB//36UL1+eE/hZjFnowjxS39SpwM2b5nbnzkBAgLnNLPRgFrowDz2YhR6sLyhJxbcsMdalSxf89ttvToedy2zoREREdhYWBkycaG7LIK+33rK6RUREROR2xffevXtRpUoV49M0ucQkw9BZfBMRkd0tXgycOmVuP/ccULy41S0iIiIityu+16xZk7wtIboHh0fpwSx0YR7WLC/Wp8/9tzMLPZiFLsxDD2ZB5AKznZ88eRJZsmRBepl9xkU4ZjvnLIRERLRxI/DYY+Z2hQrAjh3m0HMiIqKEYp1BwjOxL0PVqlXx7bffuuSrmMjPIyiZM5BfUszCesxCF+aResaPj93rfW/hzSz0YBa6MA89mIUezICSVHzXq1cPmzdvdslXkbMR6sjgyJEjzEIBZqEL80gdx48DCxea2zlzAm3a3P89zEIPZqEL89CDWejBDChJxfeYMWOwdu1aTJo0ia8kERG5FJnh3PF30uuvA76+VreIiIiI3HbCtffff99YbqxXr16YMmUKqlWrFuv26dOnJ0f7iIiIUlVwsLm2t5Ci+7XXrG4RERERuXXxLectyIRrHTp0iLpOlJz8/PysbgLdxSx0YR4pa8YMmRjH3G7XDsiRI+7vZRZ6MAtdmIcezILIBWY7d0WchZCIyL2FhwMlSgBHjpjXd+4EypWzulVERGR3rDMoSed8uzJOiKAjg8uXLzMLBZiFLswjZf30U3Th3aDBgwtvZqEHs9CFeejBLPRgBpTk4vvAgQPo0qULKlSogPLlyxvbss/uOBhARwayljyzsB6z0IV5pKxx42IvL/YgzEIPZqEL89CDWejBDChJxfeWLVuMtb7Xr1+P6tWr49FHH8WGDRuMide2bt3KV5eIiGxF/uvasMHcLl0aaNjQ6hYRERGRK0n0hGsyy3nDhg0xd+5ceHubDxMeHo6XXnrJuO2PP/5IznYSERGlqPHjo7d79wY8PKxsDREREbmaRBff27Ztw/Lly6MKb+Hl5YUePXqgcePGydU+cmMZM2a0ugl0F7PQhXkkv9OngXnzzO2sWYH27eN3P2ahB7PQhXnowSyIXGDYef78+bFu3br79ss+uc3O5EMEsj6DokWLMgsFmIUuzCNlfP45cOeOuS3reqdN+/D7MAs9mIUuzEMPZqEHM6Ak9Xy/++67xgRrJ06cwFNPPWXsW7NmDb777jtMmzbN1q8uZyPUkcGFCxeQI0cOeHpyUn4rMQtdmEfyu3ED+PJLcztNGuCNN+J3P2ahB7PQhXnowSz0YH1BSSq+O3bsaMzaN3ToUHz77bfGvgIFCuDrr79Ghw4dbP3qcjZCHRmcO3cO2bNnt7opbo9Z6MI8kt/MmcCVK+Z2mzZA7tzxux+z0INZ6MI89GAWerC+oCQV36JTp07G5dKlS8YPFN/YRERkJ9IRMWFC/JcXIyIiIkrx4vvXX39FQECAsaTYvbJly5boBhAREVllxQrgwAFzu04doFIlq1tERERErsozIcPMz5w5E3W9SJEi2L17N1yRB9eXUZFBlixZmIUCzEIX5pFyy4sltNebWejBLHRhHnowCz2YASWo5/vq1avIHeNEuGPHjuH27dsu+SpyQgodGcgcAmQ9ZqEL80g+//0H/P67uV2sGPDccwm7P7PQg1nowjz0YBZ6sL6gBBXfVatWxaRJkxASEhL1wyNrfV+/ft3p99eqVcu2rzBnI9SRwalTp5AvXz7+srIYs9CFeaRMr3evXvKHUcLuzyz0YBa6MA89mIUerC8oQcX3lClT8Morr6BBgwa4c+eOMXSie/fuTr9XbgsPD7ftK8zZCHVkEBgYiLx581rdFLfHLHRhHsnj3Dng++/N7YAAmUA04Y/BLPRgFrowDz2YhR6sL0jE+yOwMmXKYOPGjQgNDTU+uZEfoC1bthjb917sXHgTEZHrmzwZCA01t+Vz5AwZrG4RERERuTqOPyEiIrcSEmIW38LLC3jzTatbRERERO4g0cX3mjVrULJkSbgizkaoI4NcuXIxCwWYhS7MI+lmzwYuXjS3W7UC8udP3OMwCz2YhS7MQw9moQczIOERyRMQoly7dg3+/v7GzO6ZMmWyujlERJTM5H+88uUBx0qZmzYB1atb3SoiInJ1rDMoST3fJ0+exI0bN1zyVeQ56zoyOHz4MLNQgFnowjySZtWq6ML78ceTVngzCz2YhS7MQw9moQczoCQV37L02MyZM/kqUooJDg62ugl0F7PQhXkkz/Jiffok/fGYhR7MQhfmoQezIHKB4rtevXrYJOP1iIiIbGDPHuCXX8ztQoWAZs2sbhERERG5k0QX32PGjMHatWsxadKk5G0RERFRChg3Lnr7rbcAb28rW0NERETuJtETrr3yyiu4fPkyli1bhrJly6JatWqxbp8+fTrsOhHClStXEBAQYHVz3JqsFy85ZM6cGZ6eXBHPSsxCF+aROOfOAQULmmt7+/vLvCVAxoxJe0xmoQez0IV56MEs9AgKCjJy4IRr7i3Rn/tLzZ4lSxZ06NAh6rqr4C8nHRlkzZrV6mYQs1CHeSTO55+bhbfo3j3phbdgFnowC12Yhx7MQg/WFyS41JiTnu/AwEDjkymydkbIgwcPonjx4vDy8rK6OW6NWejCPBJOFuYoUAAIDDSHmh89CuTLl/THZRZ6MAtdmIcezEIPGYEgHZfs+XZv/AiG1AoJCbG6CXQXs9CFeSTMN9+Yhbdo0yZ5Cm8HZqEHs9CFeejBLIj0SNJ0MwcOHMCcOXOMT9SGDx+O5cuXI3fu3GjGKWSJiEgBWVY15kRrb79tZWuIiIjInSW653v16tUoX748Pv/8c6MAl0kELly4gFatWmHWrFnJ20oiIqJEWLoUOHLE3K5fH6hY0eoWERERkbtKdPHdr18/dO7cGefOnYuabG3w4MH46KOP8Mknn8DOOCGCjgyKFCnCLBRgFrowj4QZMyZ6u1+/5H1sZqEHs9CFeejBLPRgBiQS/VOwb98+tGvX7r4fpCeeeAJHZTYbG/Pw8LC6CW5PMpDJKJiF9ZiFLswj/v76C/j7b3O7XDmgQYPkfXxmoQez0IV56MEs9GAGlKTiu1ixYvj999/v+4H69ddfjdvsPjMkWZ/Bzp07mYUCzEIX5pG4Xm851zu5/+5hFnowC12Yhx7MQg9mQEmacE2GmLdu3Ro7duwwCu8pU6bg7NmzWLJkCebOnctXl5KMv6T0YBa6MI+HO3QIWLLE3M6d25zlPCUwCz2YhS7MQw9mQeQCPd8tWrQwer5lrTpZE1smXbt06RJWrlyJli1bJm8riYiIEmD8eODudCR46y3A19fqFhEREZG7S9JSY3Xq1DEuGskkcKdPn0a+5FzQlYiI1Lt0CZgxw9xOnx549VWrW0RERESUwJ7vU6dOYciQIWjfvj0GDBiALVu2IDU888wz+Oabb4ztdevWoXTp0siWLRvGxVi89dtvvzV64OWrWLVqFY4dO5ao5+NshNaTDEqWLMksFGAWujCPh5s8Gbh1y9zu0gXInDllnodZ6MEsdGEeejALPZgBiXj/FEihXapUKUyePBmHDh3CggULUKNGjaiiOKXMnj3bmMRNXLx4Ec8//zzatGmDv//+27htzZo1xm2TJk3C/Pnzja/izz//xJNPPpmibaOU5ePjY3UT6C5moQvziFtIiPx/YG7L3zm9e6fs8zELPZiFLsxDD2ZBZMPi++233zZ6oKX3WwpfWU7s/fffR58+fVKscYGBgcbzyid2QortPHnyGM9bvHhxfPDBB5g2bVrU98oQePl68uTJJA03j4iISLZjoMRnILNzMgvrMQtdmMeDffcdcOGCuS3TjxQunHLPxSz0YBa6MA89mIUezIASVHxv374d3bt3R5o0aaL2vfHGG8aEaym1rrcU3s2bNzd62MW///6Lp556KmpZs+rVq2Pr1q3GdsaMGXHw4EFjLUOZ/E16x4mIyH3I3zVjx0Zf79fPytYQERERJXLCtevXrxvnWcfkuB4cHIzkJsPJZTb13bt3o2fPnsa+a9euoUyZMlHfI4X2mTNnjG0ptitUqGCck3779m1kyJDhoc8h3ycXB3l8x5IMjmUZpNCXczTk0yqZxM3Bsf/e5Rvi2i/75DZn+519GhbXfi8vL6Mdzvbf28a49tvhmByP6exTQrseU1xt135Mcj/H87vKMcVso92OyZGH4+IKx/Sw/fE9pmXLgH37vIztmjUjUaVKBBxPnRLH5MhCvrrDz572Y3Jk4UrHdG8b7XRMMfNwlWOKyS7HJGJm4QrHZNecuOQbJXi2c5nETM73jkl+cGV5sX379sXaL2uAJ1ZISAheffVV4/xy6dF28Pb2hm+M9WL8/Pxw8+ZNY3vgwIF47bXX8MsvvyBr1qyoVq0aihUrZvSCO3753GvEiBEYOnToffv37t0b9bxZsmRBgQIFjOH2MqTdIVeuXMZFJnWL+eFD/vz5jeeXXng5DociRYoYHxbs2bMn1ptPhtTLuTgyJCim8uXLIzQ0FPv374/1Rpb98nxHjhyJ9TrI+fhXrlwxhtw7yDEULVoUFy5cwLlz56L22+GYHOcnBQUFGbPWu8Ix2TUn+Y9D2ixc5ZjsnJPkIc8j/6mHhYW5xDElV04ff1xUjsrY7tIlCDt3Hk/RY7pz547xWPIhsbTF1X/2NB+T/G3iyEL+z3eFY7JzTsePH4+Vhysck11zyps3L27cuBGVhSsck11zuvfDBXJPHpHx/ElIyAx9zj5JSoh3333XePPIOd6iU6dOxvncmzZtMnrbP/roo6jCzPFLxUHOB5c3n7wJ5PunTJkSq7f8YT3f8ia9fPky/P39bf8JW1z77XBMcj2uD03sekxxtV37MTmOw3HKiSsck51zcrRXPoyU73eFY3rY/vgckyy+UaOG2etdogSwe3cEPDxS9pgcbZJ90pbkPiZXzCmljkk+CHFk4dhn92Oyc0735uEKx2TXnOQieTi2XeGY7JqTnKorHwTIVyn8yT3Fu+c7pc7rdub77783ZjYPCAgwrkvvtsxkLh5//PFY56FL8e0gn+qVK1cOBw4cQNmyZY3HkEI6LtKLHrMnPeYbxvGH1MM+fLj3+1Jjv/yycLY/rjYmdL+GY5JfVvIJpXx66KwIt+MxPayNWo9JspAeVim+XeWYYrLbMcUnD7sdU3z2P+yYJkyI3te3r4yUSvljujeLhD6OO+aU1P0Pasu9WSS07XHtZ06JO6aUyiOu/czJ+X75PSXFt7O/p+x6TA/ar/mY4npMci/x7s4uWLBggi5JsWHDBuzatQs7duwwLrK82IcffogTJ04YS4j99ttvxi/1UaNGoWHDhlH3W7x4MV544QWjaJeebxnq4SjgE+LeT68o9UkGMrSHWViPWejCPO537BiwYIG5LVORdOiQOs/LLPRgFrowDz2YhR7MgBJ8zndquXeZMJk8TYaby2X8+PFo1KiRsU8Ka8c64/KpngwVl09ZmzZtirp16xrnfEsPOBERua5x42QiG3P7jTeAtGmtbhERERGRTYrvezkKbCGTqklvt0zwVrNmzahZzeX8x7feesvYlokY7p0YjoiIXM+lS8DXX5vbUnS/+abVLSIiIiKycfF9r8KFCxsXcm08N0YPZqEL84g2aRJw65a53a2bOew8NTELPZiFLsxDD2ZBZMPZzt2BzHYuQ9c5CyERkX6y0EWBAoCsNiN/Wx4+LPOTWN0qIiKi+7HOIBH/9cPcCD+P0JGB/JJiFtZjFrowj2jTppmFt2jTJvULb2ahB7PQhXnowSz0YAYkWHw7wdkIdWQgM9YzC+sxC12YhyksDBg7Nvr6gAGp3wZmoQez0IV56MEs9GAGJFh8ExGR7cybB5w4YW43agSUL291i4iIiIgejMU3ERHZiozcGzky+vrAgVa2hoiIiCh+WHyTWn5+flY3ge5iFrq4ex4//wzs2mVu16gB1KxpXVvcPQtNmIUuzEMPZkGkB2c7j4GzEBIR6VerFrBhg7n9ww9As2ZWt4iIiOjBWGeQYM+3E5wQQUcGly9fZhYKMAtd3D2Pv/+OLrxLlQKef966trh7FpowC12Yhx7MQg9mQILFtxMcDKAjg5MnTzILBZiFLu6eR8xzvWWGc08L/xdz9yw0YRa6MA89mIUezIAEi28iIrKFvXuBpUvN7bx5gZdftrpFRERERPHH4puIiGxh9Ojo7T59AB8fK1tDRERElDAsvkmtjBkzWt0EuotZ6OKOeZw6BXz3nbkdEAB07w4V3DELrZiFLsxDD2ZBpIe31Q3QyMvLy+omuD3JoGjRolY3g5iFOu6ax4QJQFiYuf366/LHpNUtct8sNGIWujAPPZiFHqwvSLDn2wnORqgjg3PnzjELBZiFLu6Yx5UrwFdfmdu+vsBbb0EFd8xCK2ahC/PQg1nowQxIsPh2grMR6shA/rNgFtZjFrq4Yx4TJwLXr5vbnTsDOXNCBXfMQitmoQvz0INZ6MEMSLD4JiIitaTo/vRTc1tG7MnyYkRERER2xOKbiIjU+vJLIDDQ3JalxQoXtrpFRERERInD4tsJDw8Pq5vg9iSDLFmyMAsFmIUu7pRHSAgwdqy5LYf7zjtQxZ2y0I5Z6MI89GAWejADEh6RPAEhyrVr1+Dv74+rV68iU6ZMVjeHiMitffEF8MYb5nbLlsCCBVa3iIiIKHFYZ5Bgz7cTnI1QRwYnTpxgFgowC13cJQ9ZVmzUqOjr//sf1HGXLOyAWejCPPRgFnowAxIsvp3gYAAdGQQGBjILBZiFLu6Sx+zZwPHj5najRkDlylDHXbKwA2ahC/PQg1nowQxIsPgmIiJVwsOBESOir7/7rpWtISIiIkoeLL6JiEiVRYuAAwfM7Tp1gMcft7pFREREREnH4tsJzkaoI4NcuXIxCwWYhS6unoeMyhs+3B693q6ehZ0wC12Yhx7MQg9mQIKzncfAWQiJiKy1bBnQpIm5Xb06sHGjucwYERGRnbHOIMGebyfC5YRDsjyDw4cPMwsFmIUurpyHfBQ8bFjsXm/NhbcrZ2E3zEIX5qEHs9CDGZBg8U1qBQcHW90EuotZ6OKqeaxZY/Z0i/Llgeeeg3qumoUdMQtdmIcezIJIDxbfRESkQsxeb1nX25P/QxEREZEL4Z82RERkOenxXr3a3C5eHGjVyuoWERERESUvFt9OcDZCHRnkz5+fWSjALHRx1Txi9noPGgR4eUE9V83CjpiFLsxDD2ahBzMgwdnOY+AshEREqW/7dqBKFXM7f37g0CHAx8fqVhERESUf1hkk2PPtBGcj1JHBvn37mIUCzEIXV8zjww+jtwcOtE/h7YpZ2BWz0IV56MEs9GAGJFh8k1ohISFWN4HuYha6uFIeO3YAS5aY23nyAF26wFZcKQu7Yxa6MA89mAWRHiy+iYhIRa+3nOvt52dla4iIiIhSDotvIiKyxH//AT/8YG7nzg1062Z1i4iIiIhSDotvJzy5uKyKDIoUKcIsFGAWurhSHnbv9XalLOyOWejCPPRgFnowAxKc7TwGzkJIRJR6vd4VK5rbuXIBR44AadNa3SoiIqKUwTqDBD+CcYKzEerIYOfOncxCAWahi6vk8dFHsWc4t2Ph7SpZuAJmoQvz0INZ6MEMSLD4JrX4S0oPZqGL3fPYtQtYuDC61/vVV2Fbds/ClTALXZiHHsyCSA8W30REZFmv94AB9uz1JiIiIkooFt9ERJRqdu8GFiwwt3PmtHevNxEREVFCsPh2grMR6sigZMmSzEIBZqGL3fOQXm/HNJ/9+wPp0sG27J6FK2EWujAPPZiFHsyABH8KSC0fHx+rm0B3MQtd7JqH9HrPn29u58gBvPYabM+uWbgiZqEL89CDWRDpweLbiYiICKub4PYkA5mdk1lYj1noYuc8Bg+O7vWWc73Tp4et2TkLV8MsdGEeejALPZgBCRbfRESU4rZvBxYtip7hvEcPq1tERERElLpYfBMRUYr74IPo7Xfftfe53kRERESJweKbiIhS1MaNwLJl5nb+/EC3bla3iIiIiCj1eURGOs7Ao2vXrsHf3x9BQUHGV7KO/FjKuTEyM6SHh4fVzXFrzEIXO+bx9NPAb7+Z2199BXTvDpdgxyxcFbPQhXnowSz0uHr1KgICAoyvmTJlsro5ZBH2fJNaoaGhVjeB7mIWutgpj3XrogvvIkWAzp3hUuyUhatjFrowDz2YBZEeLL6d4GyEOjLYv38/s1CAWehipzxkXNX778c+7ztNGrgMO2Xh6piFLsxDD2ahBzMgweKbiIhShPR4b9hgbpcsCbz8stUtIiIiIrIOi28iIkqRXu/33ou+PmQI4O1tZYuIiIiIrMXim9Ty8vKyugl0F7PQxQ55LF8ObN5sbpcrB7RuDZdkhyzcBbPQhXnowSyI9OBs505mO+cshEREiSentVWtCuzYYV5fvBho3tzqVhEREVmHdQYJ9nw7wc8jdGQgv6SYhfWYhS52yGPBgujCu0oVoFkzuCQ7ZOEumIUuzEMPZqEHMyDB4tsJzkaoI4MjR44wCwWYhS7a8wgLi32u97BhgKsuLas9C3fCLHRhHnowCz2YAQkW30RElGymTQMOHTK369QBGja0ukVEREREOrD4JiKiZHHzJjB0aPT1Tz5x3V5vIiIiooRi8U1q+fn5Wd0EuotZ6KI1j88+A86dM7dlgrVHH4XL05qFO2IWujAPPZgFkR6c7TwGzkJIRJQ4gYFAkSLA1auApyewaxdQurTVrSIiItKBdQYJ9nw7wQkRdGRw+fJlZqEAs9BFax4jR5qFt+jUyT0Kb61ZuCNmoQvz0INZ6MEMSLD4doKDAXRkcPLkSWahALPQRWMep0+bQ86Fry8wZAjcgsYs3BWz0IV56MEs9GAGJFh8ExFRksgkayEh5vabbwL581vdIiIiIiJ9WHwTEVGi7d8PTJ9ubsspbO+8Y3WLiIiIiHRi8U1qZcyY0eom0F3MQhdNebz/PhAebm4PGABkzQq3oikLd8csdGEeejALIj0423kMnIWQiCj+Nm4EHnvM3M6ZEzh8GEif3upWERER6cM6gwR7vp3gbIQ6Mjh37hyzUIBZ6KIlD/nYtl+/6OuDB7tf4a0lC2IW2jAPPZiFHsyABItvJzgYQEcG8p8Fs7Aes9BFSx4//AD8+ae5XaoU0K0b3I6WLIhZaMM89GAWejADEiy+iYgoQUJDgYEDo6+PGgV4e1vZIiIiIiL9WHwTEVGCfPklcOiQuV2nDvDcc1a3iIiIiEg/Ft9OeHh4WN0EtycZZMmShVkowCx0sTqPoCBzXW+HMWOkTXBLVmdB0ZiFLsxDD2ahBzMgwdnOY+AshEREDybLiY0ebW63awfMmmV1i4iIiPRjnUGCPd9OcDZCHRmcOHGCWSjALHSxMo9jx4BPPzW3fX2BYcPg1vje0INZ6MI89GAWejADEiy+neBgAB0ZBAYGMgsFmIUuVubxv/+Zk62JPn2AAgXg1vje0INZ6MI89GAWejADEiy+iYjooTZvBubMMbezZQMGDbK6RURERET2wuKbiIgeSD6s79cv+vqQIYC/v5UtIiIiIrIfFt9OcDZCHRnkypWLWSjALHSxIo+FC4ENG8ztEiWA7t1T7alV43tDD2ahC/PQg1nowQxIcLbzGDgLIRFRbLduAaVKASdOmNd//BFo0sTqVhEREdkL6wwS7Pl2Ijw83OomuD3J4PDhw8xCAWbh3nnIOt6OwrthQ+C551LlaW2B7w09mIUuzEMPZqEHMyDB4pvUCg4OtroJdBezcM88Tp4ERowwt728gPHjZdhcqjy1bfC9oQez0IV56MEsiPRg8U1ERE4NHGgOOxdvvgmULm11i4iIiIjsi8U3ERHd548/opcWy5oVGDzY6hYRERER2RuLbyc4G6GODPLnz88sFGAW7pdHRATQq1f09Y8/BjJnTrGnsy2+N/RgFrowDz2YhR7MgARnO4+BsxASEQHTpwNdupjbFSoA27aZ53wTERFR4rDOIMGebyc4G6GODPbt28csFGAW7pXH1avAO+9EX//0UxbeceF7Qw9moQvz0INZ6MEMSLD4JrVCQkKsbgLdxSzcJw8ZYn7hgrndsiVQp06KPZVL4HtDD2ahC/PQg1kQ6cHim4iIDHv3AhMmmNu+vsDo0Va3iIiIiMh1sPgmIiLI7B9vvAHcuWNeHzAAKFTI6lYRERERuQ4W3054evJl0ZBBkSJFmIUCzMI98pBlxdasMbcLF4593jc5x/eGHsxCF+ahB7PQgxmQ4GznMXAWQiJyRzLJWqlSwLlz5vWffgKee87qVhEREbkO1hkk+BGME5yNUEcGO3fuZBYKMAvXz2Pw4OjC+/nnWXjHF98bejALXZiHHsxCD2ZAgsU3qcVfUnowC9fN499/gYkTze20ac2lxSj++N7Qg1nowjz0YBZEerD4JiJyUxERwOuvm1/Fe+9xkjUiIiKilMLim4jITX3zDfDXX+Z2iRLA229b3SIiIiIi18UJ15xMhBAUFGR8JevIj2VISAj8/Pzg4eFhdXPcGrNwzTwCA4GSJYFLl8zrq1YB9esnXzvdAd8bejALXZiHHsxCD5loLSAggBOuuTn2fJNaPj4+VjeB7mIWrpfH//4XXXi3bs3CO7H43tCDWejCPPRgFkR6sPh2IsJxAiRZmoHMzsksrMcsXC+PP/8EvvrK3M6QARg3Lvna50743tCDWejCPPRgFnowAxIsvomI3Mjt20C3btHXP/wQyJvXyhYRERERuQcW30REbuSTT4C9e83tRx4B3nrL6hYRERERuQcW30REbkKK7uHDzW0vL2DqVPMrEREREaU8znYeA2c710N+LOXcGE9PT87OaTFm4Rp5yKlmtWqZ53uLQYOAESNSrp3ugO8NPZiFLsxDD2ahB2c7J8Geb1IrNDTU6ibQXczC/nlIL7ej8C5WDPjgg+Rvlzvie0MPZqEL89CDWRDpweLbCc5GqCOD/fv3689i40agalUgY0ZzrabTp2PfvnYtUKhQyrdjyBCgU6cUeejIwYNx68UXkzeLFGyvq0vMe+PMGWDAgOjrMtN52rQp0z53YpvfU26AWejCPPRgFnowAxIsvokS6+ZNoGlT4M03gT17zAK8Z0+4msiBA3HynXeS90FlzPMXXyTvY1Kc5Mfy2jVzu3NnoG5dq1tERERE5H5YfBMlZfaqoCCzmsmf3xzHGx4Ol+Pnh8jk7ib18wPSpUvexySnliwBFi82t3PkAMaMsbpFRERERO6JxTep5aV9GmYpuD09gY8/Bu7cASpXBpYujd99168HKlUCMmcG2rY1i3gZjpQhA3DkCDBhApArl/m9rVoBY8c+/DGvXDG7NGUSj5dfBm7ciL7tl1+A8uWBgACga1dzsWeHOXPM5ypSBOjXz6zQ/v036maPoUNRcPDg2M8lQ8bffx944w2zzeXKAfv3P/y2Bw07f9j95DXImhWoUMFcH0uO5epVuKP4vjfkR+L116Ovf/opkCVLyrXLHan/PeVGmIUuzEMPZkGkB4tvJ/hLSkcG5cuX152FFKmzZpldiTKDlWzHx8mTQKNGZpG5dStw/bpZeEohL4XlwYNmr7o8phTlcr1KlYc/7o8/Au3bA1u2mEXr0KHm/kOHzOHxvXoB//wDbN4MjB4dXZ117w58/71ZEM+eDezYAZQsGfWwMkNq5syZ789CThyWQn/XLvO1GDYsfrc9SFz327fPPJ7Vq4EXXwT++MMc6i9FuptJyHtDIj971tyWHzl56cjNfk+5CWahC/PQg1nowQxIsPh2gquv6chAln5Tn0XLlsDx42bxLEVs//4Pv8933wGPPw5062b2Nk+ebPaYnztn9p5LsS2PWa+eWYQfPmzuf5hHHzWHwJcoYZ5TvXChuX/ePLOXXXq8ixc3u0KlUBfyXHKuuvSYS2UmbZClSGRY+F2SQWhY2P1ZSM+/rFUlE8q99JL5oUJ8bnuQuO73339mT3jFiuZrvns3kCePWy5SHd/3hkTs+DxIVk6UzzW4yoyb/p5yA8xCF+ahB7PQgxmQWxTfJ+P7R38MnI3QepLBkSNHdGchU0hLYSyVjfQar1hhDo0+ceLB95OfSSm6HfLmBXx9zfs5iu+wMLP3WXp6pQdYhlg/TOHC0dsFCkR3eZ46BWzfbj6GXGRouaONUuRK77cch8zcLmOSc+a87z+L68HB92dRu3b0to+PfGP8bnuQuO4nowAOHAACA812likDdxWf94a8TK++Gnu4eb58qdM+d2KL31Nuglnowjz0YBZ6MANSX3wvXboURYoUgbe3NypVqoS90gsIGZG6C4888ogxFLZ///5RnyStXLkS2bJlw7C7Q1VlaYX1cm4tUUqQHmXpTXaoVQvw9jaHij+IFMZyXnfMIl7OwS5Y0Cy+ZTFmKZKll/qHH+LX6y1iftAkj+kooqXqatLEHE4uFzmfe9Wq6AK3VCmgbFlzXLL0wsvw9/iQ4eGJuS0xj5k9uznEXM5N79PHrCYpTnJKvAxiEI0bAx06WN0iIiIiIlJbfB8+fBidO3fGJ598gtOnT6NEiRLo2rUrbt++jSZNmqBq1arYsmUL9uzZg2+++ca4z9SpU43L119/bVxftGgRWsoQVaKUIOt6//WXOWGZrO8tvd+5c5vF7IPIZGhyv6lTgaNHgR49gGbNzGJZhlZLcSyFt1zknPD4nO8t5DFlSLuc4z1ypHmet5Dh2xs2mD3q0sM+caI5PF3MnWv2vEvPuPSQt24NlT7/HGjQwHxtpNdePuggp+TzGjl1X8hnOFOmcLg5ERERkQZqi2/p5ZbCu3Xr1siZMyd69OiB7du3Y8WKFbh69SrGjRuHokWLYvjw4Zg2bZpxn8DAQFSsWNHoCb9586YxUZSvFBtkS34xzjtWSWYPnzEDkJnAZYj4mjXmudvSm/yw85qXLzcLSunVliW35HGE/LzKkGo5b1sqp2zZ4l98N2xoFvRVq5rP8eGH5v6iRYGZM4G+fc3h23L+tHxgIKS3W3ra5Rx0mUlcepjvfnilapKQFi3MilLOa5dz1OX4fvoJ7iqu98alS8Brr0Vf/+wz89R4cuPfU26EWejCPPRgFkR6eETa5Oz/L7/8EpMnT8YLL7yATZs24eeffzb2S/OzZs1qFN7NmjXDoEGD8NJLL2Hw4MGoU6cOCsc8D/YhZEIKf39/o7jPlNhhs0R2IrOjy3D3nj3N7lHpOZciV3rcNalZ0xwxIEW4LOsmM8wfOybDW6xumSpt2piDGcTzz5trfLPXm4iIyHqsM0h42+FlCA0NxdixY9G3b18cOnQoVkHt4eFh9MpduXIFL774ImrVqmUMTz969KgxbP1BZAi7XGK+KURYWBjCw8OjHl960GWShJifUzj2O77vYftln9zmbL+zSRji2i/HKu1wtv/eNsa13w7HJNuOX1LyHK5wTHG13dJjkjXGZWb0cePMnXLutwxZj9F2+RoUFGR8yCWPY8UxRXTpAo9PPgF69zbPq69aFR6ffuo+OcVouyOPLFmyRD2vWLxYCm9zhELmzJH4/PMIY+l4OxyTXXNyZBEQEGDMTeIKxxSftms8Jvl/25GFXHeFY7JzTvfm4QrHZNecxOXLl6OycIVjsmtO8r4gskXxLb3Y6dOnN4rq9957776h5DKcRoaZt2nTBo0aNcK+fftw4sQJ1JOlmgAsW7YMadOmve9xR4wYgaGOtZBjkPPIM8rQVsjkz1lQoEABnDp1yuhdd8iVK5dxOXbsGIKDg6P258+f3yhSDh48iJCQkKj9MnGcfMoljx3zjV6yZEn4+Phg586dsdogazLKhw4yady9azXK88nMlTGPv1SpUsYHEDFnd5djkKH5Fy5cwDnH7Es2OSa5v3yv/OKSc/5d4ZhU5tSgAXbKeer3HlNISNQxyX8c0ubatWvj+vXrlhzTgRo1EOLo0o15TDt3ukdOMY5J8pDnqVmzZtQxXbrkje7do+caGD36Fi5dOmAMQ7fDMdk1pzt37hiPJY8tbXGFY7JzTmfPnjXuL39Qu8ox2Tkn+TvMkYerHJMdc8qbN6/x2PJ3tKMYt/sx2TUnmww2Jncfdr569WpjOPnGjRtRpkwZjBw50pjtfJZjAVtjUqEA402VXc5Xhcx7NcSYkO07GUILoGPHjkZRHp+eb3mTXrx40ZhJ3e6fsMW13w7HJI8pvxDLli0bdT+7H1Ncbdd+THK/3bt3o0KFCrF6Wu18TP9v717gZCr/P4B/LNYiuUvJ9ZfSlZJQqSi/SlKK3EoXhIqSblJ0v6ioX1F+FELin1tSJLq8ShEpUhQpSqKs+2Wx5//6nOd39mZ2ze7OzHnOzOf9eg1zZmd2n5nvnDnzPc/zfJ8gx8mLBw/4bM/Bg+lo3ToJH35ovlS1bcsl3h04TnCeU1Dj5MWCn1PFixePi+cUTtttfE78UuzFgr83Hp5TkOOUMx7x8JyCGiduL1++PCMW8fCcghonJuPMVTTsPLFZ3fPNoePszR4+fLibeBOXGGNF86z3YQLNM2He0BomzhzuxLNX3m2hsAc9VEE27jA5C0zlTACz3jfWt3tD7XPKrY35vd225xSJ52rbcwrF5ufknS2Pp+fkCeJzYpu9y6uvFsWHH5rbuRIbq5snJTFewXpOQY2T1y5vH4mH51SY2/18Tt7fznqfoD+naN0ei+cUrXjkdrviFPp2JpehYhHttud2eyLHKbffKYnF2mrne/fuRevWrXHVVVehbdu27nBXXjjUkj3UY/5XHZrVzi+55JKMN/TEiRPRuXNntzf8t99+cy+8LsHjDf2XXPBs6iuvmHXDueZ4FCkWdvHi8f33wH33Zd4+bpwpkC+xo33DHoqFXRQPeygWIvawdtj5zJkz3eHmObGnm8Nn2CPOedw8q/TJJ59k9IyzMFv//v3d+Resdk6ffvopjjrqqCP+TVUhlMDYtg3o1s1U2aIXXwTuvNPvVkkMccbMOeeYleOI4efbQEREROyjPEOsTr6PhMUXli5diiZNmriFFCK5U3BOhnrL/cV5MiyyUaVKlVyHFiWsxYuBDh3MUlucZ8plt7ylwqJAsbCLF48hQ47BsGEm5qedBnz9NYu8+N26xKJ9wx6KhV0UD3soFvbglFhOjVXyndgCuxeyouEVV1wRscQ7q4Cej4grjAFPsCgWWfC14JJg551nEu86dYCFC4G+faO6mLNiYRfGYcaMXRmJN8tWvPWWEm8/aN+wh2JhF8XDHoqFPRQDsb7gmoj8D5fTuOkmYNYss92+PcDCg2XL+t0yiTHWjxw0qEbGNpc/P/10X5skIiIiImFQ8i1iO/Zud+wIcK1IdnNyYm/PnlHt7RY78aR5z55J2LLFFJhs2dIMfBARERER+wV22Hk0eUvGiL8x4PJxCR0Lrhn57LPABReYxLtuXeCrr4BevWKaeCsW9mBx+xkzTBwqVnQwdiyXMvG7VYlL+4Y9FAu7KB72UCzsoRhIoAuuRYOqEIo1tmwBunYF5swx2507A6+9xvVC/G6Z+GTJEuDcc4EDB8z2u+8CV17pd6tEREQkHMozhNRnkktlSPE/BuvXr0/MWHz2GdCggUm8S5YERo8GJkzwLfFO6FhYtLLcdddlJt49euzAFVcoHn7TvmEPxcIuioc9FAt7KAZCSr5D0GAAO2KwdevWxIrFoUPAE08AzZsDGzcCJ59slhXjet4+DlVKyFhYhC873wLr1pntxo0d9Ojxi+JhAe0b9lAs7KJ42EOxsIdiIKSCayI22LQJuP56YP58s83K5pzgW7q03y0Tn/FtMG2auV6+PJcVS8eOHX63SkRERETySz3fIn5jws1h5vy/VClg3DhgzBgl3uLO877nnsxtvjVq1vSzRSIiIiJSUEq+Q1A1QjtiULVq1fiOxcGDXLDZrBf1119msealS02hNYskRCwsnuedlma2+/c3BdYUD3soFvZQLOyieNhDsbCHYiCkaudZqAqhxAzndHfqZIqr0a23mvW7WWBNEh4/la+9Fpg+3Ww3aWLeKsWL+90yERERKQjlGULq+Q7hEAtfie8xWLt2bXzGglXM69c32dRRRwGTJgEjR1qbeMd1LCz1zDOZiTfneb/9dmbirXjYQ7Gwh2JhF8XDHoqFPRQDISXfYq2dO3cirnCdqAEDgMsvB/7+28zz/uYboGNH2C7uYmH5uZmBA811jlDjKnM553krHvZQLOyhWNhF8bCHYiFiD1U7F4mFDRtMkr1wodm+/Xbg+eeBlBS/WyYWWbvWzEbwJgM99hjQqpXfrRIRERGRSFDyLRJts2aZpcO2bgXKlgVef91M6BXJYvduoG1bU2iNrroKePBBv1slIiIiIpGiYechqBqhHTGoXr16sGPBMtUsUd2mjUm8GzUyw8wDlnjHRSwsx57ubt2AFSvM9kknAW++CSSF+IRWPOyhWNhDsbCL4mEPxcIeioGQqp1noSqEEjHr1plh5osXm+277gKefRZITva7ZWKhF17IXM+7TBnztqlXz+9WiYiISKQozxBSz3cIqkZoRwxWrVoVzFhMmwaceabJoFiqeuZMYNiwwCbegY5FAMyfD9x3X+Y2e7zzSrwVD3soFvZQLOyieNhDsbCHYiCk5FustW/fPgTK/v1Anz5mWPn27UDTpsCyZWbYecAFLhYB8dNPQPv2QHq62X7oIeDqq4/8OMXDHoqFPRQLuyge9lAsROyh5FskEtasAc49F3jlFbPNrsxPPz18jSiR/2EZgNatgdRUs82q5o884nerRERERCRaVO1cpLCmTAG6d+dCmkDFimbcsNaHkiPU4uMAiZ9/NtunnQZMmgQULep3y0REREQkWtTzHUJSqBLDEvMY1KlTx+5Y7N0L9OoFdOhgEu9mzYBvv427xDsQsQgQlrjs3Rv45BOzXaUK8N57QLi1VxQPeygW9lAs7KJ42EOxsIdiIKSe7xC0FIAdMbC6EuTq1cB11wHLl7OxZkFmjhkuFn+7lPWxCJjnnwfeeMNcL1HC1OPLz+wExcMeioU9FAu7KB72UCzsofxCSKdgQlA1QjtisGLFCjtjMWEC0LChSbzZbTl3LvDEE3GZeFsfi4CZMQO4//7M7bFjgSZN8vc7FA97KBb2UCzsonjYQ7Gwh2IgpORbrGXdh9SePUC3bsANNwC7dwPNm5th5i1bIt5ZF4sAYuH7Ll3MsHPiQAkuBV8Qioc9FAt7KBZ2UTzsoViI2EPJt0g4Vq4EGjUy44U5Z+fRR4F584Bjj/W7ZRIA69aZUgA8f0OdOgGDBvndKhERERGJpfgcJysSKeym5Njg2283BdaqVjVlqS+6yO+WSUBs2QJceimwaZPZ5vLvPIejqV8iIiIiiaWI43iDIGXHjh0oW7Ystm3b5v4v/uHbct++fUhJSfGvQMWuXcBttwHjx5vtf//bXOc87wRiRSwCim+hFi2Ar7822/XqAZ9/blakKyjFwx6KhT0UC7soHvZQLOyxfft2lCtXzv1fRfASl4adi7WSk5P9++Mspnb22SbZ5uLLTz0FfPBBwiXeVsQioA4cMAXxvcT7uOOAOXMKl3h7FA97KBb2UCzsonjYQ7EQsYeS7xDS09P9bkLCYwxYnTPmseBAkJEjgXPOMcuJVatmFmQeMMDM9U5AvsUiwPg26t7dnK8hDqRh4p2fJcVyo3jYQ7Gwh2JhF8XDHoqFPRQDIc35FvHs2AHceiswebLZvuIKM9+7UiW/WyYB88ADwJtvZq7l/e67wOmn+90qEREREfFTYnblieT0zTfAWWeZxJvrdT/3nMmYlHhLPg0dCgwZYq5zsMRbbwEXXOB3q0RERETEb+r5lsTG8cHDhwP9+wNpaWZc8NtvA02a+N0yCaDXXjNvJQ/fWtdc42eLRERERMQWqnaehaqd24NvS86NSUpKil51zm3bgG7dgGnTzPbVV5s1oMqXj87fC6iYxCIOjBsH3HRT5jaXgo/GWt6Khz0UC3soFnZRPOyhWNhD1c6FNOxcrJXGnuhoWbwYOPNMk3gXLw689JK5rsQ79rGIA1OmALfckrl9//3Aww9H7+8pHvZQLOyhWNhF8bCHYiFiDyXfIagaoR0xWL16deRjwYEenJR73nnAr78CdeoACxcCffsCOiMc21jEiZkzgS5d+DqZ7T59gKefjt7bSfGwh2JhD8XCLoqHPRQLeygGQprzLYlj61YzLnjWLLPdrh0werRZB0qkAObONWt5Hzxotrm82Isv6jyOiIiIiBxOPd+SGNi73aCBSby59tOIEWassBJvKSAu/84yAd5ovuuvNwXXEnQ5eBERERE5An1NFGsVLVq08L+EQ3yefdas9bRhA1C3LvDVV0Dv3uqejHUs4si8eUCrVsC+fZmDKMaM4esUm7+veNhDsbCHYmEXxcMeioWIPVTtPES1c1UhjBNbtgBduwJz5pjtzp1N12SZMn63TAJs9mzg2muB/fvN9pVXAu+8AyQn+90yERERsZXyDCH1fIeg8xF2xIAfUgWOxWefmWHmTLxTUszc7gkTlHj7EYs4Mn060LZtZuLN67FOvBUPeygW9lAs7KJ42EOxsIdiIKTkOwRVI7QjBr/88kv+Y3HoEPDEE0Dz5sDGjUC9esDXX5v1vDXMPLaxiDOTJwPt2wMHDpjtjh3NbbHu8VY87KFY2EOxsIviYQ/Fwh6KgZCqnUv82LTJVL2aP99s33gjMHw4ULq03y2TgBs/3hTK946bfGu9/nrs5niLiIiISPCp51viAxNuDjPn/6VKAWPHmosSbymkkSNNsu0l3j16AG+8ocRbRERERPJHybdYK4VztcMZZj54MNCyJfDXX8BppwFLlphsSWIbizjDqVmPPQb06mWu0x132LGcWCLGw1aKhT0UC7soHvZQLETsoWrnWagKYcBwTjcrmH/6aWaX5EsvASVL+t0yCTie0+nTB3j11czb7rsPeOYZlQ4QERGR/FOeIaSe7xBUEMGOGPzzzz+5x4JVzOvXN4n3UUcBEycC//2vEm8/YhFnuHZ3hw7ZE+/nnzfLxduQeCdaPGymWNhDsbCL4mEPxcIeioGQku8QNBjAjhhs2LDh8FgcPAgMGABcfjnw999mnvfSpaYHXGIbizi0fbt5a02daraLFTPF1vr3hzUSKR62UyzsoVjYRfGwh2JhD8VASNXOJTg2bAA6dQK++MJs33Yb8MILZh1vkUL680+TeH/3ndlm3T4m4Zdd5nfLRERERCQeKPmWYHjvPVNEbetWgPNkuM5Tu3Z+t0riBBPuK68053eoYkVg9mygcWO/WyYiIiIi8ULDzsVaZcqUAdLSzJhfZkZMvM8+G1i2TIm3H7GIU7NmAeedl5l416hhBlfYnHjHczyCRrGwh2JhF8XDHoqFiD1U7TwLVSG0zLp1QMeOwOLFZvuuu0y56RIl/G6ZxAF+8g0bBtxzT+ZSYuecA8ycCVSt6nfrREREJJ4ozxBSz3cIqkbov/SpU5HOYmpMvMuVA2bMMJmSEm9f9odNmzbF1X5x4IBZv5uDKrzE+7rrgE8+sT/xjsd4BJViYQ/Fwi6Khz0UC3soBkJKvkPQYAAf7d8P9O2LpHbtkLRjBxyO/f32W+Cqq/xuWULvDzxwx8t+kZpqiqhxZTrPoEHApEnBWKku3uIRZIqFPRQLuyge9lAs7KEYCKngmthjzRqzwPI337ibf914Iyq99hqKqpq5RLCwWtu2ZkYDcSAFa/d16eJ3y0REREQk3in5FjtMmQJ07w7s3OmWmj70xhv4s0YNVCpe3O+WSZyYMAG49VZg716zXbmymc1w7rl+t0xEREREEoGGnYdQpEgRv5uQOJgJ9e5teryZeJ9/vjvMvEjr1qhQoYJiYQHGIMixYMH8Pn2AG27ITLwbNQKWLAlm4h30eMQTxcIeioVdFA97KBb2UAyEVO08C1UhjLHVq02Vq+XL+YkEDBgAPPooUEwDMiQyNm4E2rcHFi7MvK1HD+A//wE0m0FERERiRXmGkHq+Q1A1whiNAW7Y0CTeHP87Zw7w5JMZiTdjsH79esXCAkGNBSuX8y3mJd7JycCoUabQWpAT76DGIx4pFvZQLOyieNhDsbCHYiCk5DsEDQaIoj17gG7dzBjg3buB5s1NFax///uwGGzdulWxsEDQYnHwIPDww0CLFsCmTea26tWBzz83ZQWCLmjxiGeKhT0UC7soHvZQLOyhGAhpfK/Ezg8/mGHmK1eaYeaDBwMPPQQULep3yyRO/PYb0Llz9mHml1wCvPWWGWAhIiIiIuIX9XxL9PFM35gxwNlnm8S7alVg/nyTfCvxlgiZOhVo0CAz8eZb6+mngblzlXiLiIiIiP/U8x2CqhFG0K5dwG23AePHm+2WLc31Y445YgyqVq2qWFjA9lhwJsPddwMjR2beVqsWMGkS0KQJ4o7t8UgkioU9FAu7KB72UCzsoRgIqdp5FqpCGGEspsZh5qxqnpQEPP448MAD5rpIBLCX+6abgJ9/zryNbzkm4uXK+dkyERERkUzKM4SUBYVw6NAhv5sQbDyfw5LSjRubxLtaNVN6+sEHw068GYO1a9cqFhawMRb79gH33w80a5aZeJcsCYweDbz9dnwn3jbGI1EpFvZQLOyieNhDsbCHYiCkYecSWTt2AD17mgyIWrUCxo0DKlXK96/auXNn5NsnBWJTLJYuBbp2NfX7PDzPw7fZSSchIdgUj0SnWNhDsbCL4mEPxULEHur5lsj55huzsDITb67XPWQIMGtWgRJvkZzS0kyNPibaXuLNtbtZVI3LiCVK4i0iIiIiwaSeb4nMMPPhw4H+/U2GVKOGScCbNvW7ZRInmFxzQEXW3u4zzwTefBM47TQ/WyYiIiIiEh71fIegaoT5sG0b0L490KePSbzbtAGWLSt04s0YVK9eXbGwgJ+xSE0Fbr3VzO32Em8OqnjkEWDRosRMvLVv2EOxsIdiYRfFwx6KhT0UAyFVO89CVQjzafFioEMH4NdfgeLFgeeeA/r25aeL3y2TgOOnEgdP3HUXsHlz5u2NGplaflzPW0RERCQolGcIqec7BFUjDCMzGjYMOP98k3jXrg188QVw550RS7wZg1WrVikWFoh1LFi9/PLLgc6dMxPvo44C/vMf4MsvlXhr37CHYmEPxcIuioc9FAt7KAZCmvMt+bN1q1lYmYXUqF07s75T2bIR/1P7uJ6UWCEWsWCh/CeeAF58EThwIPP2tm1N4n388VFvQmBo37CHYmEPxcIuioc9FAsReyj5lvAtXAh07Ahs2GDKTLP3u3dvDTOXQklPN8uEDRgA/PVX5u1Mtl95BbjqKj9bJyIiIiISGUq+Jbzs6PnngQcf5JgZ4IQTgClTTLlpkULgMHKWCViyJPO2EiWAe+8FHngAKF3az9aJiIiIiESOku8QkpI0FT7Dli3AjTcCH3xgtjt1AkaOBMqUiXoM6tSpo1hYIBqx+OknYOBA4J13st9+7bWmbh/LCEho2jfsoVjYQ7Gwi+JhD8XCHoqBkJLvELQUwP989plJtjduBFJSgJdfBrp1i8kwc8ZAlSDtEMlY/Pkn8OijpkxA1rojp59u5nq3aBGRPxPXtG/YQ7Gwh2JhF8XDHoqFPZRfCOkUTAgJX42Qz5+Vr5o3N4l3vXpmWbHu3WM2v5sxWLFihWJhgUjEgsvBc9bCv/5lBk54v+qYY4ARI4BvvlHiHS7tG/ZQLOyhWNhF8bCHYmEPxUBIPd+SHSteXX898NFHZrtrV2D4cLPWU4zpQ8oeBY0FK5izaNoLL5hC+R7OWrjvPrOOtw9vrcDTvmEPxcIeioVdFA97KBYi9lDyLZkWLDCLKzMBL1XKdElyvrdIPm3fbpYHY0H81NTM21kk/7bbTC945cp+tlBEREREJLaUfIsZA/zYY8DjjwOOA5x2GjB5MnDKKX63TAKGw8tfesnM3+Z1D2uMcEAF53vXquVnC0VERERE/FHEcZhtCe3YsQNly5bFtm3b3P8TAud0d+kCfPKJ2ea8bmZP7Pn2Ed+W+/btQ0pKigpU+CycWPBtxLfNa6+ZoeaeokVN0s3K5nXrxq7N8Uz7hj0UC3soFnZRPOyhWNhj+/btKFeunPu/iuAlLvV8J7K5c4EbbjDLiXHiLSthcdi5JZI5RlmsjsXKlWYJ+IkTgQMHsifdnLHgFVmTyNK+YQ/Fwh6KhV0UD3soFiL2ULXzENLT0xHXDh4EBgwALrvMJN716wNLl1qVeDMGrM4Z97EIgJyx4FgZDpS44gozQ2Hs2MzEm8d3Dp74+Wfg9deVeEeD9g17KBb2UCzsonjYQ7Gwh2IgpJ7vRLNhg1m7+4svzDarX7EUNdfxFsnD7t3A22+b6uUrVmT/WblyQO/eQJ8+wLHH+tVCERERERF7KflOJLNnm6XDuOYT55qMHg20b+93q8Rya9ZwaPlxeO+9JLeKeVY1agD9+gHdupnlw0REREREJDQl34kgLc1MvmUPNzVsaKqZa0yw5PGWee89YNQoYM6cogCqZPt506aml7tdO6B4cd+aKSIiIiISGKp2Hu/Vzn/9FejYEVi0yGzfeSfw7LNAiRKwGd+WnBuTlJSk6pwxtGqVmas9bpwpB5BViRIOOncugttvN+dvxB/aN+yhWNhDsbCL4mEPxcIeqnYupJ7veDZjBnDzzWbBZU7KHTMGuPpqBEVaWpq7NIZEF4eST51qku6FCw//ec2aDnr0OIiePYuhUiU/Wig5ad+wh2JhD8XCLoqHPRQLEXuo2nk8ViPcv9/0cLdtaxLvxo2Bb78NVOLNGKxevTr4sbB4WPm77wLXXQdUrWrmbGdNvDmUnD/janQ//ZSOK65YifLlFQsbaN+wh2JhD8XCLoqHPRQLeygGQur5jjdr1wIdOpilw+iee4CnntLEXAE/85lgc03uKVNM3b2cTj3VJOJc/t3r5T50KOZNFRERERGJO0q+48n//Z9ZZHnHDqBiRTNxl4sxS8Liku6ffWaGlU+fDvz55+H3YZLN8zXXX28GSWhKmIiIiIhI5Cn5jgf79gF33w28+qrZPv98YNIk4PjjEWRFi7LKthRkSPn8+SbhnjkT+Pvvw+9TsqSZhcCEu2XLIw+MUCzsonjYQ7Gwh2JhF8XDHoqFiD1U7TxEtfNAVSH86SczOfe778z2gAHAY48BxXReJZFwCPmHH5ql3GfNMkXUcmKB+0svNcuDMfHWutwiIiIisRHIPEMiThlaCIE5H8HJuz17Art3A5UrA+PHm+wqTmKwc+dOlClTRktjhMC36PLlJtl+/33gyy/NnO6cSpUyMw+uvRZo1apgCbdiYRfFwx6KhT0UC7soHvZQLOwRmPxCokrVzoNYjXDPHjO3m2OGmXhfdJGpZh4nibcXg19++cX+WMS4d3vaNKBHDzOjoEEDYOBA4IsvsifePJnapYu5L9fqZnE1zukuaE+3YmEXxcMeioU9FAu7KB72UCzsoRgIqec7aH74wQwzX7nSVMYaNAh4+GFO6PG7ZRJhu3YBn39u5m8vWAAsW2Z6vEOpV8/0cLN3m1P+k5Nj3VoREREREcmLku8gGTsWuP120/PNxZk57LxFC79bJRHCQQyLFwOffGIS7kWLTLXyUFJSgObNTcJ9+eVAnTqxbq2IiIiIiOSHku+gdIEy6X7zTbN9ySXAhAnAMccgnqUww4xjXPaLQ8a9C3u2c0u2qX594OKLzYUzDTifO1biPRZBo3jYQ7Gwh2JhF8XDHoqFiD1U7dz2KoQrVphh5qtWAUlJppI5K5rzugRq+S8WSPv6a1Mcjcn2L7/k/ZgTTzQDG7xkm+txi4iIiEjwWJlnSMyp59vWggg8JzJ6NNC3r1nHu1o1s3Z3s2ZIlBikpqaifPnySArYiYZDh8y5Eiba3oUrwTEBz8sppwDnnWfmbDPptmWZ9iDHIh4pHvZQLOyhWNhF8bCHYmEPK/IL8Z2S7xB8HwywY4dZQuztt802J/VyyHkCdX0yBhs2bEC5cuVg+4yA7783yTV7tvk/C89z/nZeuOb2OeeYZJuXc88FKlSAlYISi0SheNhDsbCHYmEXxcMeioU9fM8vxApKvm3Dib8cZr5mjalg/vTTQP/+GmbuM56s/PVXk2B7STb/X7s29wrkWZ10EtCoUeblrLNMAi4iIiIiIolBybctmMG9+irQr58Zn1yjhun5btrU75YlFI7w//lnM2zcu/z4I7B6tSkyH46aNYGzz85MtBs2BMqWjXbLRURERETEZkq+/cBqW926AS+8YNaK2rYN6NEDeOcd8/M2bYAxY+wdhxwjZcqUicrvZUXxDRtMrzUvWZPtdetML3c4SpYETj8dOOMMU4mc//MSjyO7ohULKRjFwx6KhT0UC7soHvZQLETsoWrnsa5CyMyOY445bvm554ALLwQ6dDBZX/HiwJAhwJ13AkWKROfvJwhOm+cwcS/BZmVx7/pvv+W9pFdOHPH/r38B9eplJtn8n7dxZoCIiIiISF5U7VxIPd+xrkY4Y4ZJvHkWcv9+U23rwAGgdm1g8mQzTlncGGzevBlVqlQ5rDonX7Y//gDWrzc92KH+Z/KdX0cdZRJs73LyyeZ/JtmJPD87r1hI7Cke9lAs7KFY2EXxsIdiYQ9VOxdS8h1C1AYDcKd75BFzvWpV4KGHzPVrrzXLisXjeOV8YG/0X38BmzYBv//uYOnSNLfX2buNCTeTa14vKJ7zYDLNS506mdeZaB93nAYc5LY/bNq0CZUrV/a7KaJ4WEWxsIdiYRfFwx6KhT002FhIyXcsTZsGrFhhMjxONOYw89tuA+rWNcPOzzwT8YSfMVyKa8sW4O+/zf85r//5Z+aF25mfSxzPXSPff5M91NWrm3p1vGRNsHmdq7UpwRYRERERkVhT8h0r7PXu08dcZ4bJycIcbv7SS+Y2TiLmAtEWYnP37jV14VJTzf9Zr/P/nIm19z8Lt0cKk2YOGPASay/Jzpps88SukmsREREREbFN3CffGzZsQHVmZ/lQJBrZ29Sp2cdLHzpk/md3LCt4sdp5lIZys/d5587M/7NevNtyS6q92yKZROdUrJhJqo891lx4vWpVBykpqTj55HKoVi3Jve2YY4Dk5Oi1Q3LfHypUqBCd/ULyTfGwh2JhD8XCLoqHPRQLeygGEuhq599//z1uvvlmrFmzBt27d8eQIUMwb948dO7cGf369cPAgQOxevVqLFmyBF26dPG/CiEz2BYtzLhnzvFmT/epp8I5qoy7tjTXkOaFPcxZ/z/SbUdKqnm/WONoej5N9kIf6X8m1RUrmoriIiIiIiLxSNXOJbDJ9/79+1GvXj1ceumluPfee9G3b1+0a9cO77//vpt833333Vi3bh2eeuop9O/fHyXCLFXt7RTz5qUiObmcW1W7MBf2Fue8LWcC7UdyHK6yZU0NuPLlzf9Zr+f8P2tSzc+Twp7cY0XI33//Hccff7yqc/pMsbCL4mEPxcIeioVdFA97KBb22LZtG8qXL6/kO8EFctj5Bx984L5xhw4dilKlSrlJ9u233+4m2fXr13erCe7Zs8f9kAk38c6qZcvgfjhxWDYrensXLp+V17Z3W84Em58Jfq5hzRhu3boV1apV868R4lIs7KJ42EOxsIdiYRfFwx6KhT0C2N8pURDI5Pu7775DkyZN3MSbzjjjDPzwww+44IIL3LUMafLkyejQoQNswvMAJUsCbLb3f27Xj/Rz73rWZJrXNSdaRERERETEPoFMvjk8vHbt2tkKGBQtWtRNtpmAcw44h51zTviRhq/z4mFvOnXtmooyZdLdZJmXlJQkJCenu3OZvduY5JYsmYSiRQ9luy0lpYh7/2LFDmXcZn6ehKSkIjjkFVr7H28IEIcFhXM7nyfPnIW6fc+edOze7Rx2O++b9WwbXy/+/txuz9nG3G7nbfxZNJ4Tf+euXbvcITo5h0kF9Tnl1nbbnxMft3PnTne/89oT9OcU5Dh58eDnldeeoD+nI91u63PyYpGamoriPEDEwXMKp+02Pqe0tLSMWPD3xsNzCnKccsYjHp5TUOPE7ayxiIfnFNQ48TstqQc8sQUy+S5WrNhhw8lTUlLcxHvLli1YtWoV1q9fj4svvtj92XvvvYeS7CbO4emnn8ajjz562O1vvlkriq0XEREREZFE9M8//7g1piQxBTL55pIJrHaeFc/qJScnu29mzglv2LAhKrH6F4CPP/4YrVq1Ouz3DBgwwC3OlvWMVM2aNd3EXTuFv9jLyiXiuFScilL4S7Gwi+JhD8XCHoqFXRQPeygW9uCItRo1arh5jCSuQCbfjRo1wqhRozK2OcScw8f5ZubZJFYSZCJ90kknuT/nbaGw9zxUQTYm3vqAsgPjoFjYQbGwi+JhD8XCHoqFXRQPeygW9lDV+cQWyOhzeDnP5I0ZM8bdZrXzSy65xJ1fMXHiRHe5sXLlyuG3335zL7wuIiIiIiIi4pekoM75Hj16NO644w53aPnMmTPx7LPPuj87cOAAKleujIsuusgdms5L8+bN/W6yiIiIiIiIJLBADjunNm3aYO3atVi6dKm77FjFihXd2/v37+/+X6ZMGfdn+cEh6IMHDy7Q2uASWYqFPRQLuyge9lAs7KFY2EXxsIdiYQ/FQqiIo3r3IiIiIiIiIlEVyGHnIiIiIiIiIkGi5FtEREREREQkypR8iy9YJK9OnTpu8bwGDRrgxx9/DGuef5EiRTIurHAvEk/Gjh2b7T3uXXh7Xs4444xs9+/evXvM2iwSTX///Tdq166NX3/9tVDHD9IxROJ1vyjosYN0/BCJrYRKvln5nGuEcx3we++9F+FMd3/nnXdQs2ZNHHfccZg0aVJM2hnvWCjv5ptvxjPPPIM//vgDJ554Ylgf9kuWLMGKFSuQmprqXvgFTAqvb9++2Q68J5xwwhEf8+mnn+Lkk092VxsYOnRoTNqZCLhMovf+5mXDhg3ua9ysWbNcH7Nnzx53n9q8eXPG415++eWYtjvek72CHDtIx4/Cx6J169bZYlHQ4wfpGBL5faMgxw/SMSSy+0VBjh2k40fh5XYyUMcNyZWTIPbt2+fUqlXL6dmzp7NmzRqnVatWzhtvvJHnY1asWOEkJyc7o0aNcpYvX+6ccMIJzqpVq2LW5ng1a9YsZ+TIkRnbCxYscEqWLJnnY37//XenatWqMWhd4mnatKkze/ZsJzU11b3s2LEjz/tv3rzZOfroo51HH33U+emnn5yzzjrLjaFE3pNPPun06NEjz/t8/vnnTpMmTWLWpni2ZcsWp3HjxvyG5Kxbt67Axw7S8aPwLr74Yuell17KFo+CHD9Ix5DI7xsFOX6QjiGR3y8KcuwgHT8Kh8eE8uXLO5MnT3Y2bdrktG/f3jn33HN13JA8JUzyPX36dHcH2b17t7v97bffOuedd16ej7nzzjudSy+9NGP7xRdfdAYOHBj1tiaaV1991TnjjDPyvM+0adOcypUrO9WqVXNKlSrldOjQwdm6dWvM2hivDhw44H4J2rlzZ9iPGTZsmFOvXj0nPT3d3Z4xY4bTpUuXKLYyMe3du9epUqVKrl+uPEOHDnWOP/54p1KlSk7ZsmWdXr16uQd+icyX2oIcO0jHj8L75Zdf3P/zSjLCOX6QjiGR3zcKcvwgHUOiu1+Ee+wgHT8KJ7eTgTpuSF4SZtj5d999564HXqpUqYw5Lj/88MMRH9OiRYuM7XPOOSffa4dL3tLS0vDCCy+gV69eed5v1apVqF+/PmbPno2vvvoK69atw4ABA2LWznjFIZjp6enuUKmSJUvisssuw/r164+4XzRv3twdYkjaL6LjrbfeQuPGjVGrVq0877d69Wqcf/75+PzzzzF37lzMmzcPw4YNi1k748moUaPcYbSFPXZ4j9Pxo3A4xDkSxw/SMSTy+0ZBjh+kY0h094twjx2k40fhcPj/rbfemu31rFu3ro4bkqeESb537NiR7QOLH/pFixZ157eE+5ijjz4aGzdujHpbE8ngwYNRunTpI87Z45ckHhT45en000/Hc889586LkcLhweCkk07C+PHjsXz5cnfOUtYDSSjaL2LjtddeCyup4P04L4xx5BeuQYMGad+I4Jfaghw7Qj1O+4l/xw/SMSTy+0ZBjh+kfcOOY4d3Xx0/IiPryUAdNyQvxZAgeFAoUaJEtttSUlLcYhMshhDOY7z7S2QsWLAAw4cPd3shihcvnq/HVqlSBf/88w/2799/WFwlfF26dHEvnhEjRrgf/DwA8EM/FO0X0bdmzRr30rJly3w/lvsGC1GJf8eOUI/TfmLP8YN0DPHn+EHaN+w8dpCOH5E5GfjQQw/puCG5Spie7woVKmDLli3Zbtu5cyeSk5PDfsyR7i/h45C/Tp06uV+eTjnllCPev0OHDu6wKM+XX36JY445Rl+aIowHXg4j/PPPP3O9j/aL6JsyZYo7nC2cpKJp06ZuZdus+wYrpYp/x45Qj9N+4t/xg3QMseP4Qdo37Dh2kI4fkT0ZyCH/fO113JC8JEzyzXL//FDJevDmGW++0cN9zLJly1CtWrWotzXe7d271z04XHXVVWjbti127drlXlg/hGfMDxw4cNhjOEywX79+7penGTNmuEMIe/fu7Uv74wmXv+DBwsP3e1JSEqpXr57rY7RfRN+cOXNw0UUXZbtt27ZtOHTo0GH3PfXUU9GzZ08sWrQI48aNc4e9ad/w99gR6nHaT6J//CAdQ+w+fpD2jdgeO0jHj9ieDNRxQ/LkJAhW5WSlU6/Uf/fu3Z3WrVu717k8xsGDBw97DKsTli5d2i33z2qeDRo0cJ5//vmYtz3esLIp33o5L6zMWbNmTbdKZE5paWnOLbfc4saDy8VwiRLGVApn/PjxTu3atZ2PPvrImTt3rnPiiSc6N910k/uz7du3u697qCVnUlJSnHnz5rk/v+yyy5w77rjDh9bHpz179rhLjfz444/Zbuc+smzZssPuz8+vq6++2q2wyv1nxIgRMWxtfMpZ0Tm3Ywfp+BHbeOR1/CAdQ6Ir62ud1/GDdAyJrpzVznM7dnj31fEj8vian3LKKe6ybvyc9y58X+u4IblJmOSbZs6c6S4xUrFiRXenWLlyZZ4fSvTggw+6H2ZcTqNhw4bujiYSTx544AF3iZEKFSo4ffv2dXbt2pXnl1hveZ/ixYu7S2nwyxfXtxSJ1y+1uR07vPvq+CGJum/kdvwgHUMk3uV1MlDHDclNEf6DBLJp0ya3bD+XAKhYsWJYj2FFTxaguPDCCzX3QiTLMCou39OsWTMcddRRfjdHxLpjB+n4IRKajiES73TckFASLvkWERERERERibWEKbgmIiIiIiIi4hcl3yIiIiIiIiJRpuRbREREREREJMqUfIuIiIiIiIhEmZJvERERERERkShT8i0igTB27FgUKVIE//3vfzNu+/XXX93b+LNI/Y2gLXkzePBgHHPMMe5yJJdddpkvbbjooovwyCOPFOp3MI6ffPJJxNokEqn3ZrTxfc/3v4iIxD8l3yISKMOHD/e7Cdb44IMP8MILL2DkyJGYP38+2rRpk6/Hb9u2zU1M+H9h8O/feuuthfodiYAni46UCL744ov49ttv4acZM2a4F9tfq3jRsGFDfP311343Q0REYkDJt4gEyvLly/HZZ5/53QwrfPPNNzjzzDNx9dVXo1mzZrjtttvy9Xgm3Y8++mihk++TTjoJxx13XKF+RyJgQsnXOy9KvsN/reJFmTJlcPbZZ/vdDBERiQEl3yISKNWqVcPLL7/sdzOscODAARQtWtTvZoiIiIhIGJR8i0ig9OrVy+2V++OPPw77Wa1atQ6b/+3N+fTmVXLYerly5XDuuedi6tSpqFKlCk488USsW7cu4zFvvPEGjj32WJQtW9btTd6/f3/Gz9LT0/HYY4+hevXqbo8V51n/8ssvIdvx+eefo3nz5jjttNPy9Rwdx8Fzzz3n/o2SJUu6f+Pnn3/O9pz4XNgz+Omnn7rX8zP33Zs/X7t2bXeb/3ObvzfUa7dy5UpceeWV7uuWn3m1hw4dwoMPPojjjz/enUt/3nnnub31+fHnn3/i2muvRcWKFVG+fHl06tQJqamp+fodixYtcuOdkpKCunXrYvz48Ye9HowZ4/zAAw+gRo0ah93nSDhs+IILLnCfJ08Q8fcwjsTXhq8v3wvkxeumm27KVruAl99++w0333xzxnZW/Fnbtm3d9x1f04EDB+LgwYMZMejdu7f7PI8++miMGTPGHRFRunRpPPTQQ+59+Bzvuusutx2lSpVCo0aNsHDhwozfz5/zb44bN869eG3IOhd/586duOWWW9w6A/w7V1xxBdavXx+z1ypSwtmPJ06ciFNOOcV9rerVq4dJkyZl+znbytedI0f4uVS1alV3f/Sw3fPmzcPdd9+NChUquJ81Tz/9dNhzvr3f/+WXX7pD09kOxjdrO7kvdOjQwf2sOvXUU93fz8+ze++9N0KvlIiIRJKSbxEJFH4JZ0Lx6quvFujx/KI7YsQI9wvtoEGDMGHCBGzfvh3vvPOO+/O9e/e6X2BHjRrlJsBMQljUzPP444+786z5xZ0nAZiMXHLJJRlJkIdJDZMfJjj33XdfvtrIpPrhhx92E6WZM2diz549brKyZcuWjDnWTGB69OiBs846y73OCxPkcPB+vP+7777rbvN/bvP35rR27Vo3EWJC+sQTT+TreTzzzDN46aWX3Nfz/fffd5OT9u3b5+t3MKHkMGzGiQklk/cBAwaE/fgffvgBLVq0cE+mvPfee26iwvcQf19OTPIZt/79+7txCxffA0zeeHKAz5Pvm1deeSXjb3A+PF/f1157zd324uWdsOCQfe82tpPvN2/bk5aWhn//+9/4559/MH36dDz55JPua5t1aDb/Ht8zjRs3dhNkDmW+4447MGzYsIz7/Oc//3F/zpjz7/J38gQHzZo1y/2brVu3di9eG5j4efi+5HuS+9/kyZPd5C8/8/0L+1pFypH2Y544u+GGG9z3xIcffuie9OnatethCTrjwvfXxo0b3ZMcJ5xwQrafMwlevXo13n77bXTu3Nk9GbVixYqw28kTG2xDt27d8H//93/YsGFDts8TXl+zZo37HBgzfqZxP+7evXuhXyMREYkCR0QkAMaMGcOuMSc1NdW56667nCpVqjirV692b+PPqGbNmhnXPRdeeKEzePBg5+OPP3bv+8cffzjp6enu9YkTJ7r3ueCCC9z7eH9j/vz5GY9/8MEHnVKlSjmHDh1y9u7d66SkpDhDhw7N+Pl3333nPmbBggUZt7EdycnJzqJFi/L9PHfv3u2ULFnSefjhhzNu27p1q1OuXDnnkUceyXZftpnPr6DWrVvntp3/h8LfzZ9Pnz49z9/jvcY5vf/++86cOXMytqdMmeL+vr/++uuw+/J2xiinM844w+nUqVPG9vfff+988cUXTri6du3q1KlTx0lLS8t2W61atTK2vbhfc801bpzza9OmTc6oUaOczZs3u9t8n5x11llO7969s93Pew/mJdR7mMaOHesUL14822vXr18/p0aNGhkx6NGjh3t90KBBTt26dd3rfF96f5O/u0WLFhmP37Fjh1O6dGnniSeeyPa3brzxRvcSSps2bZymTZtmbK9du9b56KOPHD9eq3CEem+Gsx8vW7bMfc09GzdudIoWLepMnjw54zb+Xj7mzjvvDPm3+bMGDRo4Bw8edLf5f5kyZZwJEyaE9Vy93z916tSM24YMGeKccMIJGdunnnqqM2LECPf6nj173PsvXLgwH6+QiIjEknq+RSRw2Jv3999/uz1v4QwvzYq9fd4QT69IWNYhn0lJSW7xMs8555zj9jxzmDuHfu/bt88dRuoNh61fv757v6zDwok9VXxsfnGIN3vf2ZvmYS+h18Mda5dffrnbg18Ql156qdtTyx7Ef/3rX+jYsaN7O1/PcHE4L+N84YUXusOTN2/e7A69DdeSJUvceBYvXjzjNvZwcqg330MeLtXGYmeMf35xCDaHB7MWAdvJIfLsrc/P8wyn0CDn+PNvee899mizZ5S9rznfz6He28Sh/x4Ot+Zwavachos9qkuXLnVHBnA/4PvVGyJuy2t1JOHsxw0aNHCnY/Tp08ctasiRH/wsydnOSpUquaMQ8hq54dVl4P8cfs44hosjIa655pqM7cqVK2d7POPHoe27du1yRzPwfc6pFSIiYicl3yISOEzkONc01DDpnDhMM7+yJizeF2fOX846J3zZsmXZLlm/IFNBEm/y5r7m92fRUtDnQddddx369euHOnXquIktk7b8YvLCBK9du3ZuYtSyZUt3WHikX08mOZz/WxBM8Dmvn0nk9ddfjy+++MI94RBpnOed833HS7FixQr8ejChzM8JB05Z+Omnn9wpD5wGwRjnZypBrF6rcOS1H3MoPE/ScL+///773RMUTMBz4jxrToPJ67OqMI70eJ4kmDt3rnsihdMpOKWGJwRERMROSr5FJJD69u17WNE1JiFZe6bYU8wezvxgMvLVV19lSxZKlCjhJmacz8nrnB/KL728nHzyyW4PJHsmI4Ff5llk7eOPP864jQWdONc5P/OQw8ECZJRzvnokcB49C9px3jfnJTNp27RpU75+B2PJOcwsJsUeSP4+JkKjR48O+3fwNeP83azPccGCBW5xMfYiRgILc3E+O3semZSyF5UJakFeb94n1M+ZsLLXnwm4997bunUrhg4dmq/4ZS0IxhitWrXqsJ7S3NpAHH3AXlbOzWZROs4hnzZtWthF8CL5WhVUOPvx66+/7s7zZjLLERssdsbXO78KuxpBXo/nyQ/Ohed8c76GHMmhud4iInYL/3S5iIhF2CvFSsQsqOXhF/m33noLN954I37//Xe3J4jDWvPb680vsCzGxGSRyQ2HPvNLMJNiFjjiF15+eecXdva+s1BVpNYkZi8a/8azzz7rVhdnMv7UU0+5ycjtt9+OSGISxN48Fu5iMSh+gWeyyte1sPhaMWFhISgmOzwRwuJW+Umo+PjZs2e7J1nYA87HffDBB25PeriYrPM5MZFiHJl8vvnmm2FXhg8HexpZtGzKlCluBW8OqWZBv5zt5OvKHkrGltMK2NPKYlociu1hMTQmtRxOzISWvdIc5cH48H3Aaucs2sWh5hxVwKScQ+bDxXaxCBinBHA0At/XLM6WFdvAonZz5sxxfzeL7jFRJo5eYPV4JuHcB/icuY/xBEmsX6uCCmc/ZjvZrvnz57ufAyzQxmQ9GicDCpuYDxkyxC1it3v3bveEEivIi4iIndTzLSKB7v3Oil9C2XPNpJJJCudi5neZLyZ8TPSYuDPJ4bJP7L31sBI1/y6/jPMLL5d/4rBP9qRGCv8GkwCeAGjTpo2bIHz22WcR66nNivOp2TPM+bdcusqbP1xYTNq4NBMrPfNECRNKVrDm6AT+vXCxh5Rz4Dm0mckX58zyBEu4mMSxp5snY1q1auU+lol3JIc6s3eew5V50oa/l6MkmOgzSc2arHFpLv59VtBn9XrGN2dNAiabTEpZhZy/yxstwPcAq27z+fO14N/yXtf8tpVDvpnQ873L15dLYGXFk1f8G0z4+ZotXrw442d87bh/sfI3f+bNNQ536HokX6vCONJ+zJMCTPRZQZyfA2wvq8fn570bbawFwc85Vp7nc+DcdI6M4ElIjpIQERH7FGHVNb8bISIiItHFxJLFCu+55x6/myIRwKHxPMHIofFMxDk/ncuYcYoGl07kiTsREbGLhp2LiIiIBAxHHnz00Ufuygqc781h6CzQxhEs/JmIiNhHPd8iIiIiIiIiUaY53yIiIiIiIiJRpuRbREREREREJMqUfIuIiIiIiIhEmZJvERERERERkShT8i0iIiIiIiISZUq+RURERERERKJMybeIiIiIiIhIlCn5FhEREREREYkyJd8iIiIiIiIiiK7/B6b+hMkK5Vo/AAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1000x700 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import numpy as np\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"from scipy.special import expit # Sigmoid函数\n",
|
||
"\n",
|
||
"# 设置中文字体支持(如果需要)\n",
|
||
"plt.rcParams['font.sans-serif'] = ['SimHei', 'DejaVu Sans']\n",
|
||
"plt.rcParams['axes.unicode_minus'] = False\n",
|
||
"\n",
|
||
"def generate_learning_curve():\n",
|
||
" \"\"\"\n",
|
||
" 生成模拟的学习曲线数据\n",
|
||
" \"\"\"\n",
|
||
" # x轴:学习尝试次数或时间点 (从0开始)\n",
|
||
" x = np.linspace(0, 20, 400) # 调整范围从0到20,更符合\"trials/attempts\"的含义\n",
|
||
" \n",
|
||
" # 使用调整后的Sigmoid函数来模拟学习曲线\n",
|
||
" # 将x进行缩放和平移,使其适合sigmoid函数的输入范围\n",
|
||
" # Sigmoid函数输入通常在[-6, 6]左右变化较大,我们将其映射到[0, 20]\n",
|
||
" x_scaled = (x - 10) * 0.6 # 中心在10,缩放0.6倍,使曲线在中间陡峭\n",
|
||
" \n",
|
||
" y = expit(x_scaled) # y值在[0, 1]之间\n",
|
||
" \n",
|
||
" # 将y值转换为百分比 [0%, 100%]\n",
|
||
" y_percentage = y * 100\n",
|
||
"\n",
|
||
" return x, y_percentage\n",
|
||
"\n",
|
||
"def plot_learning_curve():\n",
|
||
" \"\"\"\n",
|
||
" 绘制学习曲线,并添加标注\n",
|
||
" \"\"\"\n",
|
||
" x, y = generate_learning_curve()\n",
|
||
" \n",
|
||
" fig, ax = plt.subplots(figsize=(10, 7))\n",
|
||
" \n",
|
||
" ax.plot(x, y, label='Learning Curve', color='blue', linewidth=2)\n",
|
||
" \n",
|
||
" # 添加标题和轴标签\n",
|
||
" ax.set_title('Learning Curve', fontsize=16, fontweight='bold')\n",
|
||
" ax.set_xlabel('Number of trials or attempts at learning', fontsize=12)\n",
|
||
" ax.set_ylabel('Performance (%)', fontsize=12) # 修改Y轴标签为百分比\n",
|
||
" \n",
|
||
" # 设置网格\n",
|
||
" ax.grid(True, linestyle='--', alpha=0.6)\n",
|
||
" \n",
|
||
" # Y轴设置为百分比格式\n",
|
||
" ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: '{:.0f}%'.format(y)))\n",
|
||
" ax.set_ylim(0, 100) # Y轴范围从0%到100%\n",
|
||
" ax.set_xlim(0, max(x)) # X轴范围从0开始\n",
|
||
" \n",
|
||
" # 添加标注 - 调整位置避免遮挡\n",
|
||
" # 1. Slow beginning (左下部分,x接近0,文字放在曲线起点的右侧上方,完全避开曲线)\n",
|
||
" # 选择x轴较早但y值仍很低的点\n",
|
||
" slow_begin_idx = 10 # x[10]大约在0.5,y值非常低\n",
|
||
" ax.annotate('Slow beginning', xy=(x[slow_begin_idx], y[slow_begin_idx]), \n",
|
||
" xytext=(x[slow_begin_idx]+3, y[slow_begin_idx]+20), # 大幅向右上偏移\n",
|
||
" arrowprops=dict(arrowstyle='->', color='red', lw=1.5),\n",
|
||
" fontsize=10, color='red', fontweight='bold')\n",
|
||
"\n",
|
||
" # 2. Steep acceleration (中间陡峭部分,x接近10)\n",
|
||
" steep_idx = len(x) // 2 # 大约在x=10的位置\n",
|
||
" ax.annotate('Steep acceleration', xy=(x[steep_idx], y[steep_idx]), \n",
|
||
" xytext=(x[steep_idx]-4, y[steep_idx]+20), # 向左上偏移更多\n",
|
||
" arrowprops=dict(arrowstyle='->', color='green', lw=1.5),\n",
|
||
" fontsize=10, color='green', fontweight='bold')\n",
|
||
"\n",
|
||
" # 3. Plateau (右上部分,x接近最大值)\n",
|
||
" plateau_idx = -40 # 接近末尾但不是最末端\n",
|
||
" ax.annotate('Plateau', xy=(x[plateau_idx], y[plateau_idx]), \n",
|
||
" xytext=(x[plateau_idx]-4, y[plateau_idx]-15), # 向左下偏移\n",
|
||
" arrowprops=dict(arrowstyle='->', color='orange', lw=1.5),\n",
|
||
" fontsize=10, color='orange', fontweight='bold')\n",
|
||
"\n",
|
||
" # 4. \"you did it!\" (接近最大值的地方,y接近100%)\n",
|
||
" success_idx = -20 # 不在最末端,避免与Plateau重叠\n",
|
||
" ax.annotate('you did it!', xy=(x[success_idx], y[success_idx]), \n",
|
||
" xytext=(x[success_idx]+2, y[success_idx]-20), # 向右下偏移\n",
|
||
" bbox=dict(boxstyle=\"round,pad=0.3\", facecolor=\"lightgreen\", alpha=0.8),\n",
|
||
" arrowprops=dict(arrowstyle='->', color='darkgreen', lw=1.5),\n",
|
||
" fontsize=10, color='darkgreen', fontweight='bold')\n",
|
||
"\n",
|
||
" # 调整布局以避免标签重叠\n",
|
||
" plt.tight_layout()\n",
|
||
" \n",
|
||
" # 显示图形\n",
|
||
" plt.show()\n",
|
||
"\n",
|
||
"# 执行绘图\n",
|
||
"plot_learning_curve()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "6636f291-9488-4444-bef5-74cd40d5f4d2",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 我的思考\n",
|
||
"\n",
|
||
"- 通义千问的编程能力有很大提升,下次作业换Claude来对比一下(如果还能用AI的话\n",
|
||
"- AI编码的时候真的很热衷于给一大堆注释\n",
|
||
"- 我没装Anaconda Navigator,我还是习惯拿Pycharms配环境,能避免很大麻烦"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.13.3"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|